Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Inclusion of the AirfRANS dataset #7119

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions python/dgl/data/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,7 @@
from .actor import ActorDataset
from .movielens import MovieLensDataset
from .adapter import *
from .airfrans import AirfRANSDataset
from .bitcoinotc import BitcoinOTC, BitcoinOTCDataset
from .citation_graph import (
CitationGraphDataset,
Expand Down
254 changes: 254 additions & 0 deletions python/dgl/data/airfrans.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,254 @@
""" PPIDataset for inductive learning. """
import json
import os

import numpy as np

from dgl import graph
from .. import backend as F
from .dgl_dataset import DGLBuiltinDataset
from .utils import _get_dgl_url, load_graphs, load_info, save_graphs, save_info

Check warning on line 11 in python/dgl/data/airfrans.py

View workflow job for this annotation

GitHub Actions / lintrunner

UFMT format

Run `lintrunner -a` to apply this patch.
class AirfRANSDataset(DGLBuiltinDataset):
r"""The AirfRANS dataset from the "AirfRANS: High Fidelity Computational
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

please add note that it's managed by community.

Fluid Dynamics Dataset for Approximating Reynolds-Averaged Navier-Stokes
Solutions" paper, consisting of 1,000
simulations of steady-state aerodynamics over 2D airfoils in a subsonic
flight regime.

The different tasks (:obj:`"full"`, :obj:`"scarce"`, :obj:`"reynolds"`,
:obj:`"aoa"`) define the utilized training and test splits.

Each simulation is given as a point cloud defined as the nodes of the
simulation mesh. Each point of a point cloud is described via 5
features: the inlet velocity (two components in meter per second), the
distance to the airfoil (one component in meter), and the normals (two
components in meter, set to :obj:`0` if the point is not on the airfoil).
Each point is given a target of 4 components for the underyling regression
task: the velocity (two components in meter per second), the pressure
divided by the specific mass (one component in meter squared per second
squared), the turbulent kinematic viscosity (one component in meter squared
per second).
Finaly, a boolean is attached to each point to inform if this point lies on
the airfoil or not.

Reference:
`NeurIPS Paper<https://arxiv.org/abs/2212.07564>`_

A library for manipulating simulations of the dataset is available `here
<https://airfrans.readthedocs.io/en/latest/index.html>`_.

The dataset is released under the `ODbL v1.0 License
<https://opendatacommons.org/licenses/odbl/1-0/>`_.

Statistics:

.. list-table::
:widths: 10 10 10 10 10
:header-rows: 1

* - #graphs
- #nodes
- #edges
- #features
- #labels
* - 1,000
- ~180,000
- 0
- 5
- 4

Notes
-----
Data objects contain no edge indices to be agnostic to the simulation
mesh. You are free to build a graph upon it.

Parameters
----------
mode : str
Must be one of ('train', 'test').
Default: 'train'
task : str
The task to study that defines the train and test splits ('full', 'scarce', 'reynolds', 'aoa').
Default: 'full'
raw_dir : str
Raw file directory to download/contains the input data directory.
Default: ~/.dgl/
force_reload : bool
Whether to reload the dataset.
Default: False
verbose : bool
Whether to print out progress information.
Default: True.
transform : callable, optional
A transform that takes in a :class:`~dgl.DGLGraph` object and returns
a transformed version. The :class:`~dgl.DGLGraph` object will be
transformed before every access.

Attributes
----------
num_features : int
Number of features for each node
num_labels : int
Number of labels for each node
positions : Tensor
Node positions
labels : Tensor
Node labels
features : Tensor
Node features
surfaces : Tensor
Boolean attached to each node to specify if it lies on the surface of the airfoil

Examples
--------
>>> dataset = AirfRANSDataset(mode='test', task='scarce')
>>> graph_names = dataset.graph_names
>>> for g in dataset:
.... name = g.name
.... pos = g.ndata['pos']
.... feat = g.ndata['feat']
.... label = g.ndata['label']
.... surf = g.ndata['surf']
.... # your code here
>>>
"""

def __init__(
self,
mode="train",
task="full",
raw_dir=None,
force_reload=False,
verbose=False,
transform=None,
):
assert mode in ["train", "test"]
assert task in ["full", "scarce", "reynolds", "aoa"]
self.mode = mode
self.task = task
_url = _get_dgl_url("dataset/airfrans.zip")
super(AirfRANSDataset, self).__init__(
name="airfrans",
url=_url,
raw_dir=raw_dir,
force_reload=force_reload,
verbose=verbose,
transform=transform,
)

def process(self):
position_file = os.path.join(
self.save_path, "airfrans_positions.npy"
)
label_file = os.path.join(
self.save_path, "airfrans_labels.npy"
)
feat_file = os.path.join(
self.save_path, "airfrans_feats.npy"
)
surf_file = os.path.join(
self.save_path, "airfrans_surfaces.npy"
)
graph_name_file = os.path.join(
self.save_path, "manifest.json"
)

self._positions = np.load(position_file, allow_pickle = True)
self._labels = np.load(label_file, allow_pickle = True)
self._feats = np.load(feat_file, allow_pickle = True)
self._surfaces = np.load(surf_file, allow_pickle = True)

with open(graph_name_file, 'r') as f:
self._graph_names = json.load(f)

total = self._graph_names['full_train'] + self._graph_names['full_test']
partial = set(self._graph_names[f'{self.task}_{self.mode}'])
self.graphs = []
for k, s in enumerate(total):
if s in partial:
g = graph(([], []), num_nodes=self._positions[k].shape[0])
g.ndata["pos"] = F.tensor(
self._positions[k], dtype=F.data_type_dict["float32"]
)
g.ndata["feat"] = F.tensor(
self._feats[k], dtype=F.data_type_dict["float32"]
)
g.ndata["label"] = F.tensor(
self._labels[k], dtype=F.data_type_dict["float32"]
)
g.ndata["surf"] = F.tensor(
self._surfaces[k], dtype=F.data_type_dict["float32"]
)

self.graphs.append(g)

@property
def graph_list_path(self):
return os.path.join(
self.save_path, "{}_dgl_graph_list.bin".format(self.mode)
)

@property
def info_path(self):
return os.path.join(self.save_path, "{}_info.pkl".format(self.mode))

def has_cache(self):
return (
os.path.exists(self.graph_list_path)
and os.path.exists(self.g_path)
and os.path.exists(self.info_path)
)

def save(self):
save_graphs(self.graph_list_path, self.graphs)
save_info(
self.info_path, {"positions": self._positions, "labels": self._labels, "feats": self._feats, "surfaces": self._surfaces}
)

def load(self):
self.graphs = load_graphs(self.graph_list_path)
info = load_info(self.info_path)
self._positions = info["positions"]
self._labels = info["labels"]
self._feats = info["feats"]
self._surfaces = info["surfaces"]

@property
def num_features(self):
return 5

@property
def num_labels(self):
return 4

@property
def graph_names(self):
return self._graph_names

def __len__(self):
"""Return number of samples in this dataset."""
return len(self.graphs)

def __getitem__(self, item):
"""Get the item^th sample.

Parameters
---------
item : int
The sample index.

Returns
-------
:class:`dgl.DGLGraph`
graph structure, node features and node labels.

- ``ndata['pos']``: node positions
- ``ndata['feat']``: node features
- ``ndata['label']``: node labels
- ``ndata['surf']``: node surfaces boolean (``True`` if the node lies on the surface of the airfoil)
"""
if self._transform is None:
return self.graphs[item]
else:
return self._transform(self.graphs[item])
Loading