Library provides functions for simple serialize and deserialize data:
You can serialize/deserialize numbers, arrays, enums, structs and combinations of those.
void sbinSerialize(RH=EmptyReprHandler, R, string file=__FILE__, size_t line=__LINE__, Ts...)
(auto ref R r, auto ref const Ts vals) if (isOutputRange!(R, ubyte) && Ts.length && isReprHandler!RH);
Call put(r, <data>)
for all fields in vals recursively.
Do not allocate memory if used range with @nogc
put
.
ubyte[] sbinSerialize(RH=EmptyReprHandler, T, string file=__FILE__, size_t line=__LINE__)
(auto ref const T val) if (isReprHandler!RH)
Uses inner appender!(ubyte[])
.
void sbinDeserialize(RH=EmptyReprHandler, R, string file=__FILE__, size_t line=__LINE__, Target...)
(R range, ref Target target) if (isReprHandler!RH);
Fills target
from range
bytes
Target sbinDeserialize(Target, R, string file=__FILE__, size_t line=__LINE__)(R range);
Target sbinDeserialize(RH=EmptyReprHandler, Target, R, string file=__FILE__, size_t line=__LINE__)
(R range) if (isReprHandler!RH);
Creates Unqual!Target ret
, fill it and return.
Can throw:
SBinDeserializeEmptyRangeException
then try read empty rangeSBinDeserializeException
then after deserialize input range is not empty
Exception messages builds with gc (~
is used for concatenate).
Allocate memory if deserialize:
- strings
- associative arrays
- dynamic array if target length is not equal length from input bytes
void sbinDeserializePart(RH=EmptyReprHandler, R, string file=__FILE__, size_t line=__LINE__, Target...)
(ref R range, ref Target target) if (isInputRange!R && is(Unqual!(ElementType!R) == ubyte) && isReprHandler!RH);
Target sbinDeserializePart(RH=EmptyReprHandler, Target, R, string file=__FILE__, size_t line=__LINE__)
(ref R range) if (isReprHandler!RH);
Target sbinDeserializePart(Target, R, string file=__FILE__, size_t line=__LINE__)(ref R range);
Can throw:
SBinDeserializeEmptyRangeException
then try read empty range
- dynamic arrays (associative arrays too) and algebraic types (serialized only current value, not full storage) has variable length, all other types has fixed size
- raw unions are not allowed by default, for allowing use config
allow-raw-unions
// All enums serialize as numbers
enum Color
{
black = "#000000",
red = "#ff0000",
green = "#00ff00",
blue = "#0000ff",
white = "#ffffff"
}
struct Foo
{
ulong a;
float b, c;
ushort d;
string str;
Color color;
@sbinSkip int local = 42;
}
const foo1 = Foo(10, 3.14, 2.17, 8, "s1", Color.red);
// a b c d
const foo1Size = ulong.sizeof + float.sizeof * 2 + ushort.sizeof +
// str color
(1 + foo1.str.length) + ubyte.sizeof;
// length of dynamic arrays packed to variable length uint
// color is ubyte because [EnumMembers!Color].length < ubyte.max
const foo1Data = foo1.sbinSerialize; // used inner appender
assert(foo1Data.length == foo1Size);
// deserialization return instance of Foo
assert(foo1Data.sbinDeserialize!Foo == foo1);
const foo2 = Foo(2, 2.22, 2.22, 2, "str2", Color.green);
const foo2Size = ulong.sizeof + float.sizeof * 2 + ushort.sizeof +
(1 + foo2.str.length) + ubyte.sizeof;
enum Level { low, medium, high }
struct Bar
{
ulong a;
float b;
Level level;
Foo[] foos;
}
auto bar = Bar(123, 3.14, Level.high, [ foo1, foo2 ]);
// a b level
const barSize = ulong.sizeof + float.sizeof + ubyte.sizeof +
// foos
(ubyte.sizeof + foo1Size + foo2Size);
assert(bar.sbinSerialize.length == barSize);
If you use sbin to serialize data to and from file, you will be interested
to maintain stability in the binary serialization format, so that files saved
with older versions of your softare can be opened in newer versions. Sbin has
been using the same format since release 0.5.0, and will continue doing so at
least until the major version number is bumped. It is therefore safe to allow
dub to do minor version upgrades with a version specification like ~>0.8
,
equivalent to ">=0.8.0 <1.0.0".
If, in the future, changes to the format are made, then sbin will provide a
variant of sbinDeserialize
that supports the older format(s). This will be
mentioned in the release notes.
However, it will be up to the application programmer (you) to call the correct
variant of sbinDeserialize
. You are therefore advised to save your files
with a file header from which you will always be able to derive the format
version with which the succeeding bytes should be deserialized.
(Of course the major version number may be bumped without changing the format.)
If a field in a struct has the @sbinSkip
attribute, the field will
not be serialized. Upon deserialization the field will have the value of
the static initializer if there is one, or .init
otherwise.
You can use vlint
and vluint
. They are long
and ulong
under the
hood. Minimal count of bytes that they need is 1: for vlint
it will be
for values [-63, 64]
, for vluint
for [0, 127]
. Maximum count of
bytes is 10 for values near the limit of long
and ulong
.
Add to your type Foo
:
T sbinCustomRepr() @property const
whereT
is serializable representation ofFoo
, what can be used for full restore datastatic Foo sbinFromCustomRepr()(auto ref const T repr)
what returns is new instance for your deserialization type
See
Phobos 2.097 include std.sumtype
, it supports too.
For example std.bitmanip.BitArray
has pointer, std.datetime.SysTime
has
class field TimeZone
. They can't be serialized automaticaly.
For solving this problem you can use representation handlers.
Representation handler is simple struct with sbinReprHandler
enum field and
static methods, two methods for one wrapped type: repr
for get
representation, fromRepr
for get original type.
Example:
struct RH
{
// need for detecting representation handlers
enum sbinReprHandler;
static:
// representation must can be [de]serialized
static struct BAW { vluint bc; void[] data; }
// this method must get const original value
BAW repr(const BitArray ba) { return BAW(vluint(ba.length), cast(void[])ba.dup); }
BitArray fromRepr(BAW w) { return BitArray(w.data.dup, w.bc); }
long repr(const SysTime t) { return t.toUTC.stdTime; }
SysTime fromRepr(long r) { return SysTime(r, UTC()); }
}
struct Foo
{
string name;
BitArray bits;
SysTime tm;
}
auto foo = Foo("bar", BitArray([1,0,1]), Clock.currTime);
const foo_bytes = sbinSerialize!RH(foo);
auto foo2 = sbinDeserialize!(RH, Foo)(foo_bytes);
assert (foo == foo2);
You can combinate representation handlers in one struct:
import std.sumtype;
import std : Nullable, SysTime;
static struct NullableAsSumTypeRH
{
enum sbinReprHandler;
static:
alias ST = std.sumtype.SumType;
auto repr(N)(in N n)
if (is(N == Nullable!X, X))
{
alias R = ST!(typeof(null), typeof(N.init.get));
return n.isNull ? R(null) : R(n.get);
}
auto fromRepr(N)(in N n)
if (is(N == ST!X, X...) && X.length == 2 && is(X[0] == typeof(null)))
{
alias X = N.Types;
alias R = Nullable!(X[1]);
return n.match!(
(typeof(null) v) => R.init,
v => R(v)
);
}
}
static struct SysTimeAsLongRH
{
enum sbinReprHandler;
static:
long repr(const SysTime t) { return t.toUTC.stdTime; }
SysTime fromRepr(long r) { return SysTime(r, UTC()); }
}
import sbin.repr;
alias RH = CombineReprHandler!(SysTimeAsLongRH, NullableAsSumTypeRH);
/+ same as
static struct RH
{
enum sbinReprHandler;
alias repr = SysTimeAsLongRH.repr;
alias fromRepr = SysTimeAsLongRH.fromRepr;
alias repr = NullableAsSumTypeRH.repr;
alias fromRepr = NullableAsSumTypeRH.fromRepr;
}
+/
alias NB = Nullable!ubyte;
alias S = std.sumtype.SumType!(NB, SysTime);
const val1 = [ S(NB.init), S(NB(11)), S(NB.init), S(NB(33)), S(SysTime(0)) ];
const data = sbinSerialize!RH(val1);
assert (data == [5, 0,0, 0,1,11, 0,0, 0,1,33, 1,0,0,0,0,0,0,0,0]);
const val2 = sbinDeserialize!(RH, S[])(data);
assert (val1 == val2)
To avoid collisions recomends use type wrappers because of rulles of functions overloads:
static struct RH
{
enum sbinReprHandler;
static:
static struct SBinSysTime { long value; }
SBinSysTime repr(const SysTime t) { return SBinSysTime(t.toUTC.stdTime); }
SysTime fromRepr(SBinSysTime r) { return SysTime(r.value, UTC()); }
static struct SBinFoo { long value; }
SBinFoo repr(const Foo f) { return SBinFoo(f.getValue); }
Foo fromRepr(SBinFoo f) { return Foo(f.value); }
}
See sbin.stdtypesrh
for some basic handlers.
Unions serializes/deserializes as static byte array without analyze elements (size of union is size of max element).
If you want use arrays or strings in unions you must implement custom [de]serialize methods or use tagged algebraic
Not supported. See Tagged algebraics if you need variablic types.
Can't automatic [de]serialize pointers data. For arrays use builtin arrays. For struct and class types see custom serialization.
If you want use sbin for message passing between applications you must use strictly identical types (one source code), because struct fields are not marked (deserialization relies solely on information from type) and any change in code (swap fields, change fields type, change enum values list) must be accompanied by recompilation of all applications.
Deserialize works after initialization of object and const or immutable fields are can't be setted.
If struct have two arrays
struct Foo
{
ubyte[] a, b;
}
and these arrays point to one memory
auto arr = cast(ubyte[])[1,2,3,4,5,6];
auto foo = Foo(arr, arr[0,2]);
assert (foo.a.ptr == foo.b.ptr);
then they will be serialized separated and after deserialize will be point to different memory parts
auto foo2 = foo.sbinSerialize.sbinDeserialize!Foo;
assert (foo2.a.ptr != foo.b.ptr);
Classes must have custom serialize methods, otherwise they can't be serialized.
class Foo
{
ulong id;
this(ulong v) { id = v; }
ulong sbinCustomRepr() const @property
{
return id;
}
// must be static
static Foo sbinFromCustomRepr(ulong v)
{
return new Foo(v);
}
}