Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Improve tests #29

Merged
merged 2 commits into from
Jul 15, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
34 changes: 34 additions & 0 deletions scripts/test/gen/nn_act_func.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,34 @@
# This script generates test cases for nn_act_func_softmax function.

import numpy as np

# Returns the softmax activation function result.
def nn_act_func_softmax(x):
exp_x = np.exp(x - np.max(x, axis=-1, keepdims=True))
return exp_x / np.sum(exp_x, axis=-1, keepdims=True)

# Generates a test case.
def generate_test_case(input):
input_c = ", ".join(map(str, input.flatten()))
expected_value = nn_act_func_softmax(input)
expected_value_c = ", ".join(map(str, expected_value.flatten()))
return f"""
{{
.act_func = nn_act_func_init(NN_ACT_FUNC_TENSOR, nn_act_func_softmax),
.input = nn_tensor_init_NNTensor(2, (const size_t[]){{1, {len(input)}}}, false, (const NNTensorUnit[]){{{input_c}}}, NULL),
.expected_value = nn_tensor_init_NNTensor(2, (const size_t[]){{1, {len(input)}}}, false, (const NNTensorUnit[]){{{expected_value_c}}}, NULL),
.expected_tolerance = default_expected_tolerance,
}}"""

# Generate test cases
np.random.seed(2024)
test_cases = []
inputs = [
np.array([0.8, 0.2, 0.1]),
np.array([-0.6, 0.0, 0.6]),
np.array([0.3, -0.3, 0.0])
]
for input in inputs:
test_cases.append(generate_test_case(input))

print(f"TestCase test_cases[] = {{{', '.join(test_cases)},\n}};")
22 changes: 22 additions & 0 deletions scripts/test/gen/nn_act_func_identity.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,22 @@
# This script generates test cases for nn_act_func_identity function.

import numpy as np

# Generates a test case.
def generate_test_case(input):
return f"""
{{
.act_func = nn_act_func_init(NN_ACT_FUNC_SCALAR, nn_act_func_identity),
.input = {input},
.expected_value = {input},
.expected_tolerance = default_expected_tolerance,
}}"""

# Generate test cases
np.random.seed(2024)
test_cases = []
inputs = [-1.0, 0.0, 1.0]
for input in inputs:
test_cases.append(generate_test_case(input))

print(f"TestCase test_cases[] = {{{', '.join(test_cases)},\n}};")
27 changes: 27 additions & 0 deletions scripts/test/gen/nn_act_func_relu.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,27 @@
# This script generates test cases for nn_act_func_relu function.

import numpy as np

# Returns the ReLU activation function result.
def nn_act_func_relu(x):
return np.maximum(0, x)

# Generates a test case.
def generate_test_case(input):
expected_value = nn_act_func_relu(input)
return f"""
{{
.act_func = nn_act_func_init(NN_ACT_FUNC_SCALAR, nn_act_func_relu),
.input = {input},
.expected_value = {expected_value},
.expected_tolerance = default_expected_tolerance,
}}"""

# Generate test cases
np.random.seed(2024)
test_cases = []
inputs = [-2.0, -1.0, 0.0, 1.0, 2.0]
for input in inputs:
test_cases.append(generate_test_case(input))

print(f"TestCase test_cases[] = {{{', '.join(test_cases)},\n}};")
33 changes: 33 additions & 0 deletions scripts/test/gen/nn_act_func_scalar_batch.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,33 @@
# This script generates test cases for nn_act_func_softmax function.

import numpy as np

# Returns the ReLU activation function result.
def nn_act_func_relu(x):
return np.maximum(0, x)

# Generates a test case.
def generate_test_case(input):
input_c = ", ".join(map(str, input.flatten()))
expected_value = nn_act_func_relu(input)
expected_value_c = ", ".join(map(str, expected_value.flatten()))
return f"""
{{
.act_func = nn_act_func_init(NN_ACT_FUNC_TENSOR, nn_act_func_relu),
.input = nn_tensor_init_NNTensor(2, (const size_t[]){{1, {len(input)}}}, false, (const NNTensorUnit[]){{{input_c}}}, NULL),
.expected_value = nn_tensor_init_NNTensor(2, (const size_t[]){{1, {len(input)}}}, false, (const NNTensorUnit[]){{{expected_value_c}}}, NULL),
.expected_tolerance = default_expected_tolerance,
}}"""

# Generate test cases
np.random.seed(2024)
test_cases = []
inputs = [
np.array([0.8, 0.2, -0.1, 0.0]),
np.array([-0.6, 0.0, 0.6, -1.0]),
np.array([0.3, -0.3, 1.0, 0.0])
]
for input in inputs:
test_cases.append(generate_test_case(input))

print(f"TestCase test_cases[] = {{{', '.join(test_cases)},\n}};")
27 changes: 27 additions & 0 deletions scripts/test/gen/nn_act_func_sigmoid.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,27 @@
# This script generates test cases for nn_act_func_sigmoid function.

import numpy as np

# Returns the sigmoid activation function result.
def nn_act_func_sigmoid(x):
return 1 / (1 + np.exp(-x))

# Generates test cases.
def generate_test_case(input):
expected_value = nn_act_func_sigmoid(input)
return f"""
{{
.act_func = nn_act_func_init(NN_ACT_FUNC_SCALAR, nn_act_func_sigmoid),
.input = {input},
.expected_value = {expected_value},
.expected_tolerance = default_expected_tolerance,
}}"""

# Generate test cases
np.random.seed(2024)
test_cases = []
inputs = [-2.0, -1.0, 0.0, 1.0, 2.0]
for input in inputs:
test_cases.append(generate_test_case(input))

print(f"TestCase test_cases[] = {{{', '.join(test_cases)},\n}};")
34 changes: 34 additions & 0 deletions scripts/test/gen/nn_act_func_softmax.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,34 @@
# This script generates test cases for nn_act_func_softmax function.

import numpy as np

# Returns the softmax activation function result.
def nn_act_func_softmax(x):
exp_x = np.exp(x - np.max(x, axis=-1, keepdims=True))
return exp_x / np.sum(exp_x, axis=-1, keepdims=True)

# Generates a test case.
def generate_test_case(input):
input_c = ", ".join(map(str, input.flatten()))
expected_value = nn_act_func_softmax(input)
expected_value_c = ", ".join(map(str, expected_value.flatten()))
return f"""
{{
.act_func = nn_act_func_init(NN_ACT_FUNC_TENSOR, nn_act_func_softmax),
.input = nn_tensor_init_NNTensor(1, (const size_t[]){{{len(input)}}}, false, (const NNTensorUnit[]){{{input_c}}}, NULL),
.expected_value = nn_tensor_init_NNTensor(1, (const size_t[]){{{len(input)}}}, false, (const NNTensorUnit[]){{{expected_value_c}}}, NULL),
.expected_tolerance = default_expected_tolerance,
}}"""

# Generate test cases
np.random.seed(2024)
test_cases = []
inputs = [
np.array([1.0, 2.0, 3.0]),
np.array([-1.0, 0.0, 1.0]),
np.array([0.5, -0.5, 0.0])
]
for input in inputs:
test_cases.append(generate_test_case(input))

print(f"TestCase test_cases[] = {{{', '.join(test_cases)},\n}};")
34 changes: 34 additions & 0 deletions scripts/test/gen/nn_act_func_tensor_batch.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,34 @@
# This script generates test cases for nn_act_func_softmax function.

import numpy as np

# Returns the softmax activation function result.
def nn_act_func_softmax(x):
exp_x = np.exp(x - np.max(x, axis=-1, keepdims=True))
return exp_x / np.sum(exp_x, axis=-1, keepdims=True)

# Generates a test case.
def generate_test_case(input):
input_c = ", ".join(map(str, input.flatten()))
expected_value = nn_act_func_softmax(input)
expected_value_c = ", ".join(map(str, expected_value.flatten()))
return f"""
{{
.act_func = nn_act_func_init(NN_ACT_FUNC_TENSOR, nn_act_func_softmax),
.input = nn_tensor_init_NNTensor(2, (const size_t[]){{1, {len(input)}}}, false, (const NNTensorUnit[]){{{input_c}}}, NULL),
.expected_value = nn_tensor_init_NNTensor(2, (const size_t[]){{1, {len(input)}}}, false, (const NNTensorUnit[]){{{expected_value_c}}}, NULL),
.expected_tolerance = default_expected_tolerance,
}}"""

# Generate test cases
np.random.seed(2024)
test_cases = []
inputs = [
np.array([-0.1, 0.2, 0.8, 0.0]),
np.array([1.0, 0.5, -0.4, -1.0]),
np.array([0.9, -0.3, 0.1, 0.0])
]
for input in inputs:
test_cases.append(generate_test_case(input))

print(f"TestCase test_cases[] = {{{', '.join(test_cases)},\n}};")
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
# This script generates test cases for NNLayer.
# This script generates test cases for NNLayer struct.

import numpy as np

Expand Down
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
# This script generates test cases for NNLayer.
# This script generates test cases for NNLayer struct.

import numpy as np

Expand Down
4 changes: 0 additions & 4 deletions src/nn_activation.c
Original file line number Diff line number Diff line change
Expand Up @@ -6,8 +6,6 @@
#include <stdbool.h>
#include <stddef.h>

// TODO: Add tests

NNActFunc nn_act_func_init(NNActFuncType type, void *func) {
NN_DEBUG_PRINT(5, "function %s called with type=%d\n", __func__, type);

Expand Down Expand Up @@ -138,11 +136,9 @@ bool nn_act_func_tensor_batch(const NNActFuncTensor act_func, const NNTensor *in
size_t sizes[1] = {sample_size};
NNTensor input_slice;
NNTensor output_slice;

for (size_t i = 0; i < batch_size; i++) {
nn_tensor_slice(input, i * sample_size, sizes, &input_slice);
nn_tensor_slice(output, i * sample_size, sizes, &output_slice);

if (!act_func(&input_slice, &output_slice, error)) {
return false;
}
Expand Down
3 changes: 3 additions & 0 deletions src/nn_layer.c
Original file line number Diff line number Diff line change
Expand Up @@ -172,12 +172,15 @@ bool nn_layer_forward(const NNLayer *layer, const NNTensor *inputs, NNTensor *ou
}
// TODO: Should we overwrite the weights tensor so that we don't have to allocate a new tensor every time?
if (!nn_mat_transpose(layer->weights, weights, error)) {
nn_tensor_destroy_NNTensor(weights);
return false;
}
// Perform matrix multiplication
if (!layer->mat_mul_func(inputs, weights, outputs, error)) {
nn_tensor_destroy_NNTensor(weights);
return false;
}
nn_tensor_destroy_NNTensor(weights);
} else {
// Perform matrix multiplication
if (!layer->mat_mul_func(inputs, layer->weights, outputs, error)) {
Expand Down
8 changes: 4 additions & 4 deletions tests/arch/arm/cmsis-dsp/dot_prod_perf/main.c
Original file line number Diff line number Diff line change
Expand Up @@ -21,13 +21,13 @@ int main(int argc, char *argv[]) {
struct timespec start, end;
long long total_time = 0;
const int batch_size = 1024;
const int n_vectors = 4096;
const int vector_size = 4096;
NNTensor *vec_a[batch_size];
NNTensor *vec_b[batch_size];
for (int i = 0; i < batch_size; i++) {
vec_a[i] = nn_tensor_init_NNTensor(1, (const size_t[]){4096}, false, NULL, NULL);
vec_b[i] = nn_tensor_init_NNTensor(1, (const size_t[]){4096}, false, NULL, NULL);
for (int j = 0; j < n_vectors; ++j) {
vec_a[i] = nn_tensor_init_NNTensor(1, (const size_t[]){vector_size}, false, NULL, NULL);
vec_b[i] = nn_tensor_init_NNTensor(1, (const size_t[]){vector_size}, false, NULL, NULL);
for (int j = 0; j < vector_size; ++j) {
vec_a[i]->data[j] = (NNTensorUnit)rand() / (NNTensorUnit)RAND_MAX;
vec_b[i]->data[j] = (NNTensorUnit)rand() / (NNTensorUnit)RAND_MAX;
}
Expand Down
8 changes: 4 additions & 4 deletions tests/arch/arm/neon/dot_prod_perf/main.c
Original file line number Diff line number Diff line change
Expand Up @@ -21,13 +21,13 @@ int main(int argc, char *argv[]) {
struct timespec start, end;
long long total_time = 0;
const int batch_size = 1024;
const int n_vectors = 4096;
const int vector_size = 4096;
NNTensor *vec_a[batch_size];
NNTensor *vec_b[batch_size];
for (int i = 0; i < batch_size; i++) {
vec_a[i] = nn_tensor_init_NNTensor(1, (const size_t[]){4096}, false, NULL, NULL);
vec_b[i] = nn_tensor_init_NNTensor(1, (const size_t[]){4096}, false, NULL, NULL);
for (int j = 0; j < n_vectors; ++j) {
vec_a[i] = nn_tensor_init_NNTensor(1, (const size_t[]){vector_size}, false, NULL, NULL);
vec_b[i] = nn_tensor_init_NNTensor(1, (const size_t[]){vector_size}, false, NULL, NULL);
for (int j = 0; j < vector_size; ++j) {
vec_a[i]->data[j] = (NNTensorUnit)rand() / (NNTensorUnit)RAND_MAX;
vec_b[i]->data[j] = (NNTensorUnit)rand() / (NNTensorUnit)RAND_MAX;
}
Expand Down
8 changes: 8 additions & 0 deletions tests/arch/generic/activation/activation.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,8 @@
void test_nn_act_func_init();
void test_nn_act_func();
void test_nn_act_func_identity();
void test_nn_act_func_sigmoid();
void test_nn_act_func_relu();
void test_nn_act_func_softmax();
void test_nn_act_func_scalar_batch();
void test_nn_act_func_tensor_batch();
15 changes: 15 additions & 0 deletions tests/arch/generic/activation/include.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,15 @@
tests/arch/generic/activation/nn_act_func_init.c
tests/arch/generic/activation/nn_act_func.c
tests/arch/generic/activation/nn_act_func_identity.c
tests/arch/generic/activation/nn_act_func_sigmoid.c
tests/arch/generic/activation/nn_act_func_relu.c
tests/arch/generic/activation/nn_act_func_softmax.c
tests/arch/generic/activation/nn_act_func_scalar_batch.c
tests/arch/generic/activation/nn_act_func_tensor_batch.c
src/nn_activation.c
src/nn_app.c
src/nn_argmax.c
src/nn_config.c
src/nn_error.c
src/nn_test.c
src/nn_tensor.c
18 changes: 18 additions & 0 deletions tests/arch/generic/activation/main.c
Original file line number Diff line number Diff line change
@@ -0,0 +1,18 @@
#include "./activation.h"
#include "nn_app.h"

int main(int argc, char *argv[]) {
nn_init_app(argc, argv);
// nn_set_debug_level(5); // for debugging

test_nn_act_func_init();
test_nn_act_func();
test_nn_act_func_identity();
test_nn_act_func_sigmoid();
test_nn_act_func_relu();
test_nn_act_func_softmax();
test_nn_act_func_scalar_batch();
test_nn_act_func_tensor_batch();

return 0;
}
Loading
Loading