Skip to content

PyTorch implementation of the original GAN paper by Goodfellow et al.

License

Notifications You must be signed in to change notification settings

ddehueck/pytorch-GAN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

pytorch-GAN

A PyTorch Implementation of Goodfellow et al.'s Paper on Generative Adversarial Networks. Find the paper at: https://arxiv.org/pdf/1406.2661.pdf

How to run:

Currently has MNIST experiment implemented. Built with torch 1.1.0 and python3.6.

pip install -r requirements.txt

python train.py --epochs 300 --lr 1e-4 --batch-size 32

Once train.py is running one can open a new shell and running tensboard in order to track various metrics and current generated images during training.

tensorboard --logdir=runs/<CURRENT_RUN_DIRECTORY>

How to adjust hyperparameters:

One can use different arguments defined in train.py to adjust various hyperparameters

--epochs EPOCHS       number of epochs to train for (default: 300)
  --lr LR               learning rate for optimizer (default: 1e-4)
  --batch-size BATCH_SIZE
                        number of examples in a batch (default: 32)
  --device DEVICE       device to train on (default: cuda:0 if cuda is
                        available otherwise cpu)
  --latent-size LATENT_SIZE
                        size of latent space vectors (default: 64)
  --g-hidden-size G_HIDDEN_SIZE
                        number of hidden units per layer in G (default: 256)
  --d-hidden-size D_HIDDEN_SIZE
                        number of hidden units per layer in D (default: 256)

Results:

Epoch 2 Epoch 20 Epoch 499 Epoch 999

About

PyTorch implementation of the original GAN paper by Goodfellow et al.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages