Skip to content

MapReader: A computer vision pipeline for the semantic exploration of maps at scale

License

Notifications You must be signed in to change notification settings

dcsw2/MapReader

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation


MapReader

A computer vision pipeline for the semantic exploration of maps/images at scale

Continuous integration badge Binder License

Gallery

classification_one_inch_maps_001
tutorial for classification_one_inch_maps_001
Tutorial on how to train/fine-tune PyTorch CV classifiers on historical maps. Figure shows the rail infrastructure around London as predicted by a MapReader CV model.
classification_plant_phenotype
tutorial for classification_plant_phenotype
Tutorial on how to train/fine-tune PyTorch CV classifiers on plant patches in images (plant phenotyping example).
MapReader paper
MapReader's paper

What is MapReader?

MapReader is an end-to-end computer vision (CV) pipeline for analyzing large collections of images/maps. It has two main components: preprocessing/annotation and training/inference:

MapReader pipeline

MapReader provides a set of tools to:

  • load images/maps stored locally or retrieve maps via web-servers (e.g., tileservers which can be used to retrieve maps from OpenStreetMap (OSM), the National Library of Scotland (NLS), or elsewhere). ⚠️ Refer to the credits and re-use terms section if you are using digitized maps or metadata provided by NLS.
  • preprocess images/maps (e.g., divide them into patches, resampling the images, removing borders outside the neatline or reprojecting the map).
  • annotate images/maps or their patches (i.e. slices of an image/map) using an interactive annotation tool.
  • train, fine-tune, and evaluate various CV models.
  • predict labels (i.e., model inference) on large sets of images/maps.
  • Other functionalities include:
    • various plotting tools using, e.g., matplotlib, cartopy, Google Earth, and kepler.gl.
    • compute mean/standard-deviation pixel intensity of image patches.

Below is an example of MapReader CV model output (see the paper on MapReader for more details):

British railspace and buildings as predicted by a MapReader computer vision model

British 'railspace' and buildings as predicted by a MapReader computer vision model. ~30.5M patches from ~16K nineteenth-century Ordnance Survey map sheets were used (courtesy of the National Library of Scotland). (a) Predicted railspace; (b) predicted buildings; (c) and (d) predicted railspace (red) and buildings (black) in and around Middlesbrough and London, respectively. MapReader extracts information from large images or a set of images at a patch level, as depicted in the insets. For both railspace and buildings, we removed those patches that had no other neighboring patches with the same label within a distance of 250 meters.

Table of contents

Installation

Set up a conda environment

We strongly recommend installation via Anaconda:

conda create -n mr_py38 python=3.8
  • Activate the environment:
conda activate mr_py38

Method 1

  • Install mapreader:
pip install git+https://github.com/Living-with-machines/MapReader.git
  • ⚠️ On Windows, you might need to do:
# activate the environment
conda activate mr_py38

# install rasterio and fiona manually
conda install -c conda-forge rasterio=1.2.10
conda install -c conda-forge fiona=1.8.20

# install git
conda install git

# install MapReader
pip install git+https://github.com/Living-with-machines/MapReader.git

# open Jupyter Notebook (if you want to test/work with the notebooks in "examples" directory)
cd /path/to/MapReader 
jupyter notebook
python -m ipykernel install --user --name mr_py38 --display-name "Python (mr_py38)"

Method 2

  • Clone mapreader source code:
git clone https://github.com/Living-with-machines/MapReader.git 
  • Install:
cd /path/to/MapReader
pip install -v -e .
  • Adding a ipython kernel to use in the Tutorials
python -m ipykernel install --user --name "<name-of-your-kernel>" --display-name "<Python (my kernel)>"

How to cite MapReader

Please consider acknowledging MapReader if it helps you to obtain results and figures for publications or presentations, by citing:

Link: https://arxiv.org/abs/2111.15592

Kasra Hosseini, Daniel C. S. Wilson, Kaspar Beelen and Katherine McDonough (2021), MapReader: A Computer Vision Pipeline for the Semantic Exploration of Maps at Scale, arXiv:2111.15592.

and in BibTeX:

@misc{hosseini2021mapreader,
      title={MapReader: A Computer Vision Pipeline for the Semantic Exploration of Maps at Scale}, 
      author={Kasra Hosseini and Daniel C. S. Wilson and Kaspar Beelen and Katherine McDonough},
      year={2021},
      eprint={2111.15592},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Credits and re-use terms

Digitized maps

MapReader can retrieve maps from NLS (National Library of Scotland) via webservers. For all the digitized maps (retrieved or locally stored), please note the re-use terms:

⚠️ Use of the digitised maps for commercial purposes is currently restricted by contract. Use of these digitised maps for non-commercial purposes is permitted under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC-BY-NC-SA) licence. Please refer to https://maps.nls.uk/copyright.html#exceptions-os for details on copyright and re-use license.

Metadata

We have provided some metadata files in mapreader/persistent_data. For all these file, please note the re-use terms:

⚠️ Use of the metadata for commercial purposes is currently restricted by contract. Use of this metadata for non-commercial purposes is permitted under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC-BY-NC-SA) licence. Please refer to https://maps.nls.uk/copyright.html#exceptions-os for details on copyright and re-use license.

Acknowledgements

This work was supported by Living with Machines (AHRC grant AH/S01179X/1) and The Alan Turing Institute (EPSRC grant EP/N510129/1). Living with Machines, funded by the UK Research and Innovation (UKRI) Strategic Priority Fund, is a multidisciplinary collaboration delivered by the Arts and Humanities Research Council (AHRC), with The Alan Turing Institute, the British Library and the Universities of Cambridge, East Anglia, Exeter, and Queen Mary University of London.

About

MapReader: A computer vision pipeline for the semantic exploration of maps at scale

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 100.0%