Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Implemented GroupBy.tail #1949

Merged
merged 4 commits into from
Dec 10, 2020
Merged
Show file tree
Hide file tree
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
85 changes: 85 additions & 0 deletions databricks/koalas/groupby.py
Original file line number Diff line number Diff line change
Expand Up @@ -1867,6 +1867,86 @@ def head(self, n=5) -> Union[DataFrame, Series]:
internal = kdf._internal.with_new_sdf(sdf)
return DataFrame(internal).drop(groupkey_labels, axis=1)

def tail(self, n=5) -> Union[DataFrame, Series]:
"""
Return last n rows of each group.

Similar to `.apply(lambda x: x.tail(n))`, but it returns a subset of rows from
the original DataFrame with original index and order preserved (`as_index` flag is ignored).

Does not work for negative values of n.

Returns
-------
DataFrame or Series

Examples
--------
>>> df = ks.DataFrame({'a': [1, 1, 1, 1, 2, 2, 2, 3, 3, 3],
... 'b': [2, 3, 1, 4, 6, 9, 8, 10, 7, 5],
... 'c': [3, 5, 2, 5, 1, 2, 6, 4, 3, 6]},
... columns=['a', 'b', 'c'],
... index=[7, 2, 4, 1, 3, 4, 9, 10, 5, 6])
>>> df
a b c
7 1 2 3
2 1 3 5
4 1 1 2
1 1 4 5
3 2 6 1
4 2 9 2
9 2 8 6
10 3 10 4
5 3 7 3
6 3 5 6

>>> df.groupby('a').tail(2).sort_index()
a b c
1 1 4 5
4 2 9 2
4 1 1 2
5 3 7 3
6 3 5 6
9 2 8 6

>>> df.groupby('a')['b'].tail(2).sort_index()
1 4
4 9
4 1
5 7
6 5
9 8
Name: b, dtype: int64
"""
kdf = self._kdf

if self._agg_columns_selected:
agg_columns = self._agg_columns
else:
agg_columns = [
kdf._kser_for(label)
for label in kdf._internal.column_labels
if label not in self._column_labels_to_exlcude
]

kdf, groupkey_labels, _ = GroupBy._prepare_group_map_apply(
kdf, self._groupkeys, agg_columns,
)

groupkey_scols = [kdf._internal.spark_column_for(label) for label in groupkey_labels]

sdf = kdf._internal.spark_frame
tmp_col = verify_temp_column_name(sdf, "__row_number__")
window = Window.partitionBy(groupkey_scols).orderBy(F.col(NATURAL_ORDER_COLUMN_NAME).desc())
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This implementation basically same as GroupBy.head() except this line - used descending order -.

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Then, shall we combine those two? Like:

def _limit(n, asc: bool):
   ...
   window = ... orderBy(F.col(NATURAL_ORDER_COLUMN_NAME).asc() if asc else F.col(NATURAL_ORDER_COLUMN_NAME).desc())
   ...

def head(self, n):
   return self._limit(n, asc=True)

def tail(self, n):
   return self._limit(n, asc=False)

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Cool! let me address it. Thanks for the suggestion :)

sdf = (
sdf.withColumn(tmp_col, F.row_number().over(window))
.filter(F.col(tmp_col) <= n)
.drop(tmp_col)
)

internal = kdf._internal.with_new_sdf(sdf)
return DataFrame(internal).drop(groupkey_labels, axis=1)

def shift(self, periods=1, fill_value=None) -> Union[DataFrame, Series]:
"""
Shift each group by periods observations.
Expand Down Expand Up @@ -2706,6 +2786,11 @@ def head(self, n=5) -> Series:

head.__doc__ = GroupBy.head.__doc__

def tail(self, n=5) -> Series:
return first_series(super().tail(n)).rename(self._kser.name)

tail.__doc__ = GroupBy.tail.__doc__

def size(self) -> Series:
return super().size().rename(self._kser.name)

Expand Down
2 changes: 0 additions & 2 deletions databricks/koalas/missing/groupby.py
Original file line number Diff line number Diff line change
Expand Up @@ -66,7 +66,6 @@ class MissingPandasLikeDataFrameGroupBy(object):
prod = _unsupported_function("prod")
resample = _unsupported_function("resample")
sem = _unsupported_function("sem")
tail = _unsupported_function("tail")


class MissingPandasLikeSeriesGroupBy(object):
Expand Down Expand Up @@ -103,4 +102,3 @@ class MissingPandasLikeSeriesGroupBy(object):
prod = _unsupported_function("prod")
resample = _unsupported_function("resample")
sem = _unsupported_function("sem")
tail = _unsupported_function("tail")
122 changes: 122 additions & 0 deletions databricks/koalas/tests/test_groupby.py
Original file line number Diff line number Diff line change
Expand Up @@ -2608,3 +2608,125 @@ def test_get_group(self):
self.assertRaises(
ValueError, lambda: kdf.groupby([("B", "class"), ("A", "name")]).get_group("mammal")
)

def test_tail(self):
pdf = pd.DataFrame(
{
"a": [1, 1, 1, 1, 2, 2, 2, 3, 3, 3] * 3,
"b": [2, 3, 1, 4, 6, 9, 8, 10, 7, 5] * 3,
"c": [3, 5, 2, 5, 1, 2, 6, 4, 3, 6] * 3,
},
index=np.random.rand(10 * 3),
)
kdf = ks.from_pandas(pdf)

self.assert_eq(pdf.groupby("a").tail(2).sort_index(), kdf.groupby("a").tail(2).sort_index())
self.assert_eq(
pdf.groupby("a").tail(-2).sort_index(), kdf.groupby("a").tail(-2).sort_index()
)
self.assert_eq(
pdf.groupby("a").tail(100000).sort_index(), kdf.groupby("a").tail(100000).sort_index()
)

self.assert_eq(
pdf.groupby("a")["b"].tail(2).sort_index(), kdf.groupby("a")["b"].tail(2).sort_index()
)
self.assert_eq(
pdf.groupby("a")["b"].tail(-2).sort_index(), kdf.groupby("a")["b"].tail(-2).sort_index()
)
self.assert_eq(
pdf.groupby("a")["b"].tail(100000).sort_index(),
kdf.groupby("a")["b"].tail(100000).sort_index(),
)

self.assert_eq(
pdf.groupby("a")[["b"]].tail(2).sort_index(),
kdf.groupby("a")[["b"]].tail(2).sort_index(),
)
self.assert_eq(
pdf.groupby("a")[["b"]].tail(-2).sort_index(),
kdf.groupby("a")[["b"]].tail(-2).sort_index(),
)
self.assert_eq(
pdf.groupby("a")[["b"]].tail(100000).sort_index(),
kdf.groupby("a")[["b"]].tail(100000).sort_index(),
)

self.assert_eq(
pdf.groupby(pdf.a // 2).tail(2).sort_index(),
kdf.groupby(kdf.a // 2).tail(2).sort_index(),
)
self.assert_eq(
pdf.groupby(pdf.a // 2)["b"].tail(2).sort_index(),
kdf.groupby(kdf.a // 2)["b"].tail(2).sort_index(),
)
self.assert_eq(
pdf.groupby(pdf.a // 2)[["b"]].tail(2).sort_index(),
kdf.groupby(kdf.a // 2)[["b"]].tail(2).sort_index(),
)

self.assert_eq(
pdf.b.rename().groupby(pdf.a).tail(2).sort_index(),
kdf.b.rename().groupby(kdf.a).tail(2).sort_index(),
)
self.assert_eq(
pdf.b.groupby(pdf.a.rename()).tail(2).sort_index(),
kdf.b.groupby(kdf.a.rename()).tail(2).sort_index(),
)
self.assert_eq(
pdf.b.rename().groupby(pdf.a.rename()).tail(2).sort_index(),
kdf.b.rename().groupby(kdf.a.rename()).tail(2).sort_index(),
)

# multi-index
midx = pd.MultiIndex(
[["x", "y"], ["a", "b", "c", "d", "e", "f", "g", "h", "i", "j"]],
[[0, 0, 0, 0, 0, 1, 1, 1, 1, 1], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]],
)
pdf = pd.DataFrame(
{
"a": [1, 1, 1, 1, 2, 2, 2, 3, 3, 3],
"b": [2, 3, 1, 4, 6, 9, 8, 10, 7, 5],
"c": [3, 5, 2, 5, 1, 2, 6, 4, 3, 6],
},
columns=["a", "b", "c"],
index=midx,
)
kdf = ks.from_pandas(pdf)

self.assert_eq(pdf.groupby("a").tail(2).sort_index(), kdf.groupby("a").tail(2).sort_index())
self.assert_eq(
pdf.groupby("a").tail(-2).sort_index(), kdf.groupby("a").tail(-2).sort_index()
)
self.assert_eq(
pdf.groupby("a").tail(100000).sort_index(), kdf.groupby("a").tail(100000).sort_index()
)

self.assert_eq(
pdf.groupby("a")["b"].tail(2).sort_index(), kdf.groupby("a")["b"].tail(2).sort_index()
)
self.assert_eq(
pdf.groupby("a")["b"].tail(-2).sort_index(), kdf.groupby("a")["b"].tail(-2).sort_index()
)
self.assert_eq(
pdf.groupby("a")["b"].tail(100000).sort_index(),
kdf.groupby("a")["b"].tail(100000).sort_index(),
)

# multi-index columns
columns = pd.MultiIndex.from_tuples([("x", "a"), ("x", "b"), ("y", "c")])
pdf.columns = columns
kdf.columns = columns

self.assert_eq(
pdf.groupby(("x", "a")).tail(2).sort_index(),
kdf.groupby(("x", "a")).tail(2).sort_index(),
)
self.assert_eq(
pdf.groupby(("x", "a")).tail(-2).sort_index(),
kdf.groupby(("x", "a")).tail(-2).sort_index(),
)
self.assert_eq(
pdf.groupby(("x", "a")).tail(100000).sort_index(),
kdf.groupby(("x", "a")).tail(100000).sort_index(),
)
1 change: 1 addition & 0 deletions docs/source/reference/groupby.rst
Original file line number Diff line number Diff line change
Expand Up @@ -67,6 +67,7 @@ Computations / Descriptive Stats
GroupBy.head
GroupBy.backfill
GroupBy.shift
GroupBy.tail

The following methods are available only for `DataFrameGroupBy` objects.

Expand Down