Skip to content

A package for expressing and automatically proving logical statements symbolically in Julia

License

Notifications You must be signed in to change notification settings

ctrekker/Deductive.jl

Repository files navigation

Deductive.jl

Documentation Build Status Coverage Status

Deductive is a package for expressing and proving zeroth order and first order logical statements and theorems symbolically in Julia.

Installation

Currently this package is unregistered in Julia's general registry. Instead install through this repository directly.

(@v1.7) pkg> add https://github.com/ctrekker/PropositionalLogic.jl

Getting Started

Propositional Logic (zeroth order)

using Deductive

@symbols a b

tableau(a  b)      # true
tableau(a  b, ¬a)  # false, because contradiction

println(truthtable(a  b))
#= Outputs:
 Row │ a      b      a ∧ b 
     │ Bool   Bool   Bool  
─────┼─────────────────────
   1 │ false  false  false
   2 │  true  false  false
   3 │ false   true  false
   4 │  true   true   true
=#

Several operators are exported and their use is required in defining statements.

Symbol Completion Sequence Description
¬ \neg Negation
\wedge Logical Conjunction
\vee Logical Disjunction
\rightarrow Material Implication
\leftrightarrow Material Equivalence

OUTDATED Predicate Logic (first order)

With predicates, statements like "for all x, P(x) is true" can be written. Due to some Julia parser issues, defining a function with the symbols for universal (∀) and existential (∃) quantification isn't possible. Instead we settle for the symbols Ā (typed A\bar) and Ē (typed (E\bar)). Here's an example of their use:

using Deductive

x = FreeVariable(:x)
P = Proposition(:P)

(x, P(x))  # like saying "for all x, P(x) is true"
(x, P(x))  # like saying "for some x, P(x) is true"
¬(x, ¬P(x))  # like saying "there does not exist x such that P(x) is false", which is equivalent to Ā(x, P(x))

As an interesting example, the equivalence between Ā(x, P(x)) and ¬Ē(x, ¬P(x)) can be proven as a tautology within this package using the tableau function. This logical equivalence can be expressed as a statement Ā(x, P(x)) ⟷ ¬Ē(x, ¬P(x)), or "for all x, P(x) is true if and only if there does not exist any x such that P(x) is false".

using Deductive

x = FreeVariable(:x)
P = Proposition(:P)

my_statement = (x, P(x))  ¬((x, ¬P(x)))
# prove by contradiction
tableau(¬my_statement)  # returns false, since the contradiction of a tautology is always false

Generating Human-Readable Proofs (WIP)

The method of analytic tableaux is a complete method for proving zeroth and first order logic problems. To export these proofs in human-readable form the prove function is exported. Instead of simply yielding a true or false, this function will return a full proof containing the steps taken to determine whether a set of propositions are consistent.

using Deductive

@symbols a b c d

# basic example from above
prove(a  b, ¬a)
#= Output:
┌─────────────┬───────────┬────────────────┬────────────┐
│ Line Number │ Statement │       Argument │ References │
│       Int64 │    String │         String │     String │
├─────────────┼───────────┼────────────────┼────────────┤
│           1 │     a ∧ b │     Assumption │            │
│           2 │      ¬(a) │     Assumption │            │
│           3 │         a │ Simplification │          1 │
│           4 │         b │ Simplification │          1 │
│           5 │  a ∧ ¬(a) │  Contradiction │       3, 2 │
└─────────────┴───────────┴────────────────┴────────────┘
=#

# a far more fun example :)
prove(a  b, b  c, c  d, a, ¬d)
#= Output:
┌─────────────┬──────────────────────────┬─────────────────────────┬────────────┐
│ Line Number │                Statement │                Argument │ References │
│       Int64 │                   String │                  String │     String │
├─────────────┼──────────────────────────┼─────────────────────────┼────────────┤
│           1 │                    a → b │              Assumption │            │
│           2 │                    b → c │              Assumption │            │
│           3 │                    c → d │              Assumption │            │
│           4 │                        a │              Assumption │            │
│           5 │                     ¬(d) │              Assumption │            │
│           6 │                 ¬(c) ∨ d │ Replacement Rule <TODO> │            │
│           7 │                 ¬(a) ∨ b │ Replacement Rule <TODO> │            │
│           8 │                 ¬(b) ∨ c │ Replacement Rule <TODO> │            │
│           9 │                     ¬(c) │                  Case 1 │          6 │
│          10 │                        d │                  Case 2 │          6 │
│          11 │                     ¬(a) │                  Case 1 │          7 │
│          12 │                        b │                  Case 2 │          7 │
│          13 │                 a ∧ ¬(a) │           Contradiction │      4, 11 │
│          14 │                     ¬(b) │                  Case 1 │          8 │
│          15 │                        c │                  Case 2 │          8 │
│          16 │                 b ∧ ¬(b) │           Contradiction │     12, 14 │
│          17 │                 c ∧ ¬(c) │           Contradiction │      15, 9 │
│          18 │ ¬(¬(b) ∨ c) ∧ (¬(b) ∨ c) │           Contradiction │     14, 15 │
│          19 │ ¬(¬(a) ∨ b) ∧ (¬(a) ∨ b) │           Contradiction │     11, 12 │
│          20 │                 d ∧ ¬(d) │           Contradiction │      10, 5 │
│          21 │ ¬(¬(c) ∨ d) ∧ (¬(c) ∨ d) │           Contradiction │      9, 10 │
└─────────────┴──────────────────────────┴─────────────────────────┴────────────┘
=#

As is clear from the second example, several arguments are missing regarding replacement rules, and the organization is rather poor. This feature is very much work in progress right now.

About

A package for expressing and automatically proving logical statements symbolically in Julia

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages