Skip to content

Interpreting neural networks by reducing nonlinearities during training

License

Notifications You must be signed in to change notification settings

csirmaz/trained-linearization

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

19 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Interpreting Neural Networks by Reducing Nonlinearities during Training

This repo contains a short paper and sample code demonstrating a simple solution that makes it possible to extract rules from a neural network that employs Parametric Rectified Linear Units (PReLUs). We introduce a force, applied in parallel to backpropagation, that aims to reduce PReLUs into the identity function, which then causes the neural network to collapse into a smaller system of linear functions and inequalities suitable for review or use by human decision makers.

As this force reduces the capacity of neural networks, it is expected to help avoid overfitting as well.

Download the article in PDF format from the latest release at https://github.com/csirmaz/trained-linearization/releases/latest .