-
Notifications
You must be signed in to change notification settings - Fork 64
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
0 parents
commit 0a5419b
Showing
76 changed files
with
22,200 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,17 @@ | ||
Package: AppliedPredictiveModeling | ||
Type: Package | ||
Title: Functions and Data Sets for 'Applied Predictive Modeling' | ||
Version: 1.1-1 | ||
Date: 2013-05-29 | ||
Author: Max Kuhn, Kjell Johnson | ||
Maintainer: Max Kuhn <[email protected]> | ||
Description: A few functions and several data set for the Springer book | ||
'Applied Predictive Modeling' | ||
URL: http://appliedpredictivemodeling.com/ | ||
Depends: R (>= 2.10), CORElearn, MASS, plyr, reshape2 | ||
Suggests: caret, lattice, ellipse | ||
License: GPL | ||
Packaged: 2013-05-29 19:34:07 UTC; kuhna03 | ||
NeedsCompilation: no | ||
Repository: CRAN | ||
Date/Publication: 2013-05-30 07:31:33 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,75 @@ | ||
a1ba1a42e2fd42c2b6af9ba42e6e5933 *DESCRIPTION | ||
8b54e5a89fbda3af5e077053d40bec76 *NAMESPACE | ||
e4e564d2188913c297d854a86868bd37 *R/bookTheme.R | ||
16af3f1f03fc98647e26edefe3c1ebce *R/easyBoundaryFunc.R | ||
f4e5463cfcc4da4261f8014b1426c10c *R/getPackages.R | ||
35a9e06d580a6ed8b8d98c9f3c0a61eb *R/panels.R | ||
f3956e0be5393bb5d6fcbcfef0b6ff29 *R/permuteRelief.R | ||
c3519cd360a2dd39cef5b453f8551bc9 *R/quadBoundaryFunc.R | ||
d35f915bd2268cbb07c258bd8fce5c50 *R/scriptLocation.R | ||
98d928db47d8347a4f886f0c8e4adde1 *R/transparentTheme.R | ||
8a34126ad3a2f9d077653b26d950dddb *data/AlzheimerDisease.RData | ||
ebd3302a547a1064620517a0598f9ebf *data/ChemicalManufacturingProcess.RData | ||
ef3addd28ad9449688f0c33ba9bfc2d0 *data/FuelEconomy.RData | ||
833d3d4a90e6afe16ec007d5fc628cd2 *data/abalone.RData | ||
8fe13332a2419a2c253fb51c396f6000 *data/concrete.RData | ||
8fc335fdac839cc09b91ff3b5595f00b *data/datalist | ||
812edff8771d7faaada62fdb2c662e40 *data/hepatic.RData | ||
7d5b8064233260c344793aaecc045136 *data/logisticCreditPredictions.RData | ||
ce7019b604378875d2a55e32dde9c05a *data/permeability.RData | ||
e1590269851cf810fdffa832b6cf6d65 *data/schedulingData.RData | ||
669172e9b524f9194a23fbc84a2816f8 *data/segmentationOriginal.RData | ||
06780bd86a4db76cb2a8eb12ef107df7 *data/solubility.RData | ||
5e5422a8c05125f3ab1822f6c525296a *data/twoClassData.RData | ||
202cb28b25a21e6cb4f4182056cd3636 *inst/NEWS.Rd | ||
55afb317aa767a6e82c6c52ee985563f *inst/chapters/02_A_Short_Tour.R | ||
1f2f2179f8756bc60a5db4d285384e53 *inst/chapters/02_A_Short_Tour.Rout | ||
fa5a1a6cd542c0f02a5db901afbccc7e *inst/chapters/03_Data_Pre_Processing.R | ||
b740e1169a13b1d720dbdf82c220e72d *inst/chapters/03_Data_Pre_Processing.Rout | ||
73ff45e8ce4a2afd6792b3bf7f74d4d0 *inst/chapters/04_Over_Fitting.R | ||
4472854d26e70e0fbbb5fb389bf03abc *inst/chapters/04_Over_Fitting.Rout | ||
894a4d8414f73b412f6e4fc8933b1681 *inst/chapters/06_Linear_Regression.R | ||
cdcf0f83fd8d7d3f27d2c01c310aa68c *inst/chapters/06_Linear_Regression.Rout | ||
397c1aa95ea73468e2a1e706488faf37 *inst/chapters/07_Non-Linear_Reg.R | ||
8fcecf4b5e24eeda5fc55927f4f76735 *inst/chapters/07_Non-Linear_Reg.Rout | ||
d2129d815070f3edd9206227ebe24b9d *inst/chapters/08_Regression_Trees.R | ||
578e20ebfbd069f0ae2f1a595c323da5 *inst/chapters/08_Regression_Trees.Rout | ||
ad9f505564c6ca809b9970182f3f8790 *inst/chapters/10_Case_Study_Concrete.R | ||
83e761236b56017776258ca14149c13d *inst/chapters/10_Case_Study_Concrete.Rout | ||
c3693cc6dc941a60844d864cf264db28 *inst/chapters/11_Class_Performance.R | ||
e59029dd4ddb012b5100f5cae3c3fe5a *inst/chapters/11_Class_Performance.Rout | ||
512616afef1588d9f26d24a45dd577d7 *inst/chapters/12_Discriminant_Analysis.R | ||
6abe970f2d4d9c64d25e2da453184ab6 *inst/chapters/12_Discriminant_Analysis.Rout | ||
793602cd5edfc82f9bfef2c53a2fd9dc *inst/chapters/13_Non-Linear_Class.R | ||
10baa59ef6e6600c44f92a372c96de8e *inst/chapters/13_Non-Linear_Class.Rout | ||
c1a9e721dafd1f68b415ca3e611d794c *inst/chapters/14_Class_Trees.R | ||
e33ae9349b008519d48084fca2278005 *inst/chapters/14_Class_Trees.Rout | ||
2422c3ed8b8f5f0b46c6f1586da4af3e *inst/chapters/16_Class_Imbalance.R | ||
9331611025109d739d54646693ad71ad *inst/chapters/16_Class_Imbalance.Rout | ||
ab2f1dc1fb60cdb116d7e335f69d75a9 *inst/chapters/17_Job_Scheduling.R | ||
9d98d6048300c4f2bbc808d814a1c67f *inst/chapters/17_Job_Scheduling.Rout | ||
cdd39d98758aa17566201c45150265b8 *inst/chapters/18_Importance.R | ||
fadb4b6bf8ebbfcd2a28ec12cef5ad1b *inst/chapters/18_Importance.Rout | ||
4e9ffdf738004484e37287d8df2e3726 *inst/chapters/19_Feature_Select.R | ||
fe14eb0e0a390ab5522b5548bb50ff8f *inst/chapters/19_Feature_Select.Rout | ||
ee8d141c6ff92f1878bb1954d21cab67 *inst/chapters/CreateGrantData.R | ||
6b7d3facf17c4ad5704ca9c54c17acc1 *inst/chapters/CreateGrantData.Rout | ||
6a51123bb7533bc6ac7cc60e20c30f7c *man/AlzheimerDisease.Rd | ||
79b66304686ea5f41624e941a839f783 *man/AppliedPredictiveModeling-package.Rd | ||
2f60f009e2049b3a23bfce4321c6961e *man/ChemicalManufacturingProcess.Rd | ||
b8fb23f2d87770651df5c0b9ab178180 *man/FuelEconomy.Rd | ||
a114aed8c4e19f6e471f76aa10607efc *man/Hepatic.Rd | ||
bb766d31a2c9a73fb64a83ad8edcbf9d *man/abalone.Rd | ||
7b4f4f04359281d886b4dd90765c2a29 *man/bookTheme.Rd | ||
1a3a9b303f7a599f89cd2292a359511e *man/concrete.Rd | ||
20acadadd6df9fce573aea2b7ee52020 *man/getPackages.Rd | ||
8a02ecb81e0750c23ee2711b492dde91 *man/internal.Rd | ||
f3f357c33a2b2433fee6c8cecd4876fe *man/jobScheduling.Rd | ||
e422ed025d73fac0cd25de1a2146af1a *man/logisticCreditPredictions.Rd | ||
1b347ea3e594dc8f4b0081d90b5764a1 *man/permeability.Rd | ||
8559d6e7451f0060acb9b80827bb5fc3 *man/permuteRelief.Rd | ||
a0b9d85cec1c624144825536cc0b4993 *man/quadBoundaryFunc.Rd | ||
94865b7fd486f04a94e7dae86599f242 *man/scriptLocation.Rd | ||
d242e9c533e5abb92513999c16dd91d1 *man/segmentationOrignal.Rd | ||
fc76accf5ef83c49775649d296b61ff7 *man/solubility.Rd | ||
bc21567d7b20d731be212decec057ab5 *man/twoClassData.Rd |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
exportPattern("^[[:alpha:]]+") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,70 @@ | ||
bookTheme <- function(set = TRUE) | ||
{ | ||
library(lattice) | ||
theme <- list(plot.polygon = list(alpha = 1, col = "aliceblue", border = "black", lty = 1, lwd = 1), | ||
background = list(col = "transparent"), | ||
bar.fill = list(col = "#cce6ff"), | ||
box.rectangle = list(col = "black"), | ||
box.umbrella = list(col = "black"), | ||
dot.line = list(col = "#e8e8e8"), | ||
dot.symbol = list(col = "black"), | ||
plot.line = list(col = "black", lwd = 1, lty = 1), | ||
plot.symbol = list(col = "black", pch = 16), | ||
regions = list(col = | ||
c("#FEF8FA", "#FDF6F9", "#FBF5F9", "#FAF3F8", | ||
"#F8F2F7", "#F7F0F7", "#F5EEF6", "#F4EDF5", | ||
"#F2EBF5", "#F1EAF4", "#EFE8F3", "#EDE7F2", | ||
"#ECE5F1", "#EAE4F1", "#E8E2F0", "#E6E1EF", | ||
"#E4DFEE", "#E2DEED", "#E0DCEC", "#DEDAEB", | ||
"#DCD9EA", "#D9D7E9", "#D7D6E8", "#D4D4E7", | ||
"#D1D2E6", "#CED1E5", "#CCCFE4", "#C8CEE3", | ||
"#C5CCE2", "#C2CAE1", "#BFC9E0", "#BBC7DF", | ||
"#B8C5DF", "#B4C4DE", "#B1C2DD", "#ADC0DC", | ||
"#A9BFDB", "#A6BDDA", "#A2BBD9", "#9EB9D9", | ||
"#9BB8D8", "#97B6D7", "#93B4D6", "#8FB2D5", | ||
"#8BB0D4", "#87AFD3", "#83ADD2", "#7FABD1", | ||
"#7AA9D0", "#76A7CF", "#71A5CE", "#6CA3CC", | ||
"#68A1CB", "#63A0CA", "#5D9EC9", "#589CC8", | ||
"#539AC6", "#4E98C5", "#4996C4", "#4493C3", | ||
"#3F91C1", "#3A8FC0", "#358DBF", "#308BBE", | ||
"#2C89BD", "#2887BC", "#2385BB", "#1F83BA", | ||
"#1C80B9", "#187EB7", "#157CB6", "#127AB5", | ||
"#0F78B3", "#0D76B2", "#0A73B0", "#0971AE", | ||
"#076FAC", "#066DAA", "#056AA7", "#0568A5") | ||
), | ||
strip.shingle = list(col = c( | ||
"#ff7f00", "#00ff00", "#00ffff", | ||
"#ff00ff", "#ff0000", "#ffff00", "#0080ff")), | ||
strip.background = list(col = c( | ||
"#ffe5cc", "#ccffcc", "#ccffff", | ||
"#ffccff", "#ffcccc", "#ffffcc", "#cce6ff")), | ||
reference.line = list(col = "#e8e8e8"), | ||
superpose.line = list( | ||
col = c( | ||
"#053061", "#B2182B", "#F46D43", "#5E4FA2", "#66C2A5", "black", | ||
"#053061", "#B2182B", "#F46D43", "#5E4FA2", "#66C2A5", "black", | ||
"#053061", "#B2182B", "#F46D43", "#5E4FA2", "#66C2A5", "black", | ||
"#053061", "#B2182B", "#F46D43", "#5E4FA2", "#66C2A5", "black", | ||
"#053061", "#B2182B", "#F46D43", "#5E4FA2", "#66C2A5", "black", | ||
"#053061", "#B2182B", "#F46D43", "#5E4FA2", "#66C2A5", "black"), | ||
lty = rep(1:6, each = 6)), | ||
superpose.symbol = list( | ||
pch = c( | ||
1, 4, 6, 0, 5, 17, | ||
4, 6, 0, 5, 17, 1, | ||
6, 0, 5, 17, 1, 4, | ||
0, 5, 17, 1, 4, 6, | ||
5, 17, 1, 4, 6, 0 , | ||
17, 1, 4, 6, 0, 5), | ||
cex = rep(0.7, 6 * 6), | ||
col = c( | ||
"#053061", "#B2182B", "#F46D43", "#5E4FA2", "#66C2A5", "black", | ||
"#053061", "#B2182B", "#F46D43", "#5E4FA2", "#66C2A5", "black", | ||
"#053061", "#B2182B", "#F46D43", "#5E4FA2", "#66C2A5", "black", | ||
"#053061", "#B2182B", "#F46D43", "#5E4FA2", "#66C2A5", "black", | ||
"#053061", "#B2182B", "#F46D43", "#5E4FA2", "#66C2A5", "black", | ||
"#053061", "#B2182B", "#F46D43", "#5E4FA2", "#66C2A5", "black"))) | ||
|
||
if(set) trellis.par.set(theme) | ||
invisible(theme) | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,16 @@ | ||
|
||
easyBoundaryFunc <- function(n, intercept = 0, interaction = 2) | ||
{ | ||
require(MASS) | ||
sigma <- matrix(c(2,1.3,1.3,2),2,2) | ||
|
||
tmpData <- data.frame(mvrnorm(n=n, c(0,0), sigma)) | ||
xSeq <- seq(-4, 4, length=40) | ||
plotGrid <- expand.grid(x = xSeq, y = xSeq) | ||
zFoo <- function(x, y) intercept -4 * x + 4* y + interaction*x*y | ||
z2p <- function(x) 1/(1+exp(-x)) | ||
|
||
tmpData$prob <- z2p(zFoo(tmpData$X1, tmpData$X2)) | ||
tmpData$class <- factor(ifelse(runif(length(tmpData$prob)) <= tmpData$prob, "Class1", "Class2")) | ||
tmpData | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,45 @@ | ||
|
||
|
||
getPackages <- function(chapter, ...) | ||
{ | ||
if(is.numeric(chapter)) chapter <- paste(chapter) | ||
pkg <- list() | ||
pkg[["2"]] <- c("earth", "caret", "lattice") | ||
pkg[["3"]] <- c("e1071", "caret", "corrplot") | ||
pkg[["4"]] <- c("kernlab", "caret") | ||
pkg[["6"]] <- c("lattice", "corrplot", "pls", "elasticnet") | ||
pkg[["7"]] <- c("caret", "earth", "kernlab","lattice", "nnet") | ||
pkg[["8"]] <- c("caret", "Cubist", "gbm", "lattice", "party", "partykit", | ||
"randomForest", "rpart", "RWeka") | ||
pkg[["10"]] <- c("caret", "Cubist", "earth", "elasticnet", "gbm", "ipred", | ||
"lattice", "nnet", "party","pls", "randomForests", "rpart", | ||
"RWeka") | ||
pkg[["11"]] <- c("caret", "MASS", "randomForest", "pROC", "klaR") | ||
pkg[["12"]] <- c("caret", "glmnet", "lattice", | ||
"MASS", "pamr", "pls", "pROC", "sparseLDA") | ||
pkg[["13"]] <- c("caret", "kernlab", "klaR", "lattice", "latticeExtra", | ||
"MASS", "mda", "nnet", "pROC") | ||
pkg[["14"]] <- c("C50", "caret", "gbm", "lattice", "partykit", "pROC", | ||
"randomForest", "reshape2", | ||
"rpart", "RWeka") | ||
pkg[["16"]] <- c("caret", "C50", "earth", "DMwR", "DWD", " kernlab", "mda", | ||
"pROC", "randomForest", "rpart") | ||
pkg[["17"]] <- c("C50", "caret", "earth", "Hmisc", "ipred", "tabplot", | ||
"kernlab", "lattice", "MASS", "mda", "nnet", "pls", | ||
"randomForest", "rpart", "sparseLDA") | ||
pkg[["18"]] <- c("caret", "CORElearn", "corrplot", "pROC", "minerva") | ||
pkg[["19"]] <- c("caret", "MASS", "corrplot", "RColorBrewer", "randomForest", | ||
"kernlab", "klaR") | ||
plist <- paste(paste("'", names(pkg), "'", sep = ""), collapse = ", ") | ||
if(!any(chapter %in% names(pkg))) stop(paste("'chapter' must be: ", | ||
paste(plist, collapse = ", ")), | ||
sep = "") | ||
|
||
|
||
pkg <- unlist(pkg[chapter]) | ||
pkg <- pkg[!is.na(pkg)] | ||
pkg <- pkg[pkg != ""] | ||
pkg <- pkg[order(tolower(pkg))] | ||
|
||
install.packages(pkg, ...) | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,30 @@ | ||
upperp <- function(...) | ||
{ | ||
library(ellipse) | ||
args <- list(...) | ||
circ1 <- ellipse(diag(rep(1, 2)), t = .1) | ||
panel.xyplot(circ1[,1], circ1[,2], | ||
type = "l", | ||
lty = trellis.par.get("reference.line")$lty, | ||
col = trellis.par.get("reference.line")$col, | ||
lwd = trellis.par.get("reference.line")$lwd) | ||
circ2 <- ellipse(diag(rep(1, 2)), t = .2) | ||
panel.xyplot(circ2[,1], circ2[,2], | ||
type = "l", | ||
lty = trellis.par.get("reference.line")$lty, | ||
col = trellis.par.get("reference.line")$col, | ||
lwd = trellis.par.get("reference.line")$lwd) | ||
circ3 <- ellipse(diag(rep(1, 2)), t = .3) | ||
panel.xyplot(circ3[,1], circ3[,2], | ||
type = "l", | ||
lty = trellis.par.get("reference.line")$lty, | ||
col = trellis.par.get("reference.line")$col, | ||
lwd = trellis.par.get("reference.line")$lwd) | ||
panel.xyplot(args$x, args$y, groups = args$groups, subscripts = args$subscripts) | ||
} | ||
|
||
lowerp <- function(...) | ||
{ | ||
|
||
} | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,28 @@ | ||
permuteRelief <- | ||
function(x, y, nperm = 100, ...) | ||
{ | ||
library(CORElearn) | ||
library(plyr) | ||
library(reshape2) | ||
dat <- x | ||
dat$y <- y | ||
|
||
obs <- attrEval(y ~ ., data = dat, ...) | ||
permuted <- matrix(NA, ncol = length(obs), nrow = nperm) | ||
colnames(permuted) <- names(obs) | ||
for(i in 1:nperm) | ||
{ | ||
dat$y <- sample(y) | ||
permuted[i,] <- attrEval(y ~ ., data = dat, ...) | ||
} | ||
means <- colMeans(permuted) | ||
sds <- apply(permuted, 2, sd) | ||
permuted <- melt(permuted) | ||
names(permuted)[2] <- "Predictor" | ||
permuted$X1 <- NULL | ||
list(standardized = (obs - means)/sds, | ||
permutations = permuted, | ||
observed = obs, | ||
options = list(...)) | ||
} | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,16 @@ | ||
quadBoundaryFunc <- | ||
function(n) | ||
{ | ||
require(MASS) | ||
sigma <- matrix(c(1,.7,.7,2),2,2) | ||
|
||
tmpData <- data.frame(mvrnorm(n=n, c(1,0), sigma)) | ||
xSeq <- seq(-4, 4, length=40) | ||
plotGrid <- expand.grid(x = xSeq, y = xSeq) | ||
zFoo <- function(x, y) -1 - 2 * x - 0 * y - .2 * x^2 + 2 * y^2 | ||
z2p <- function(x) 1/(1+exp(-x)) | ||
|
||
tmpData$prob <- z2p(zFoo(tmpData$X1, tmpData$X2)) | ||
tmpData$class <- factor(ifelse(runif(length(tmpData$prob)) <= tmpData$prob, "Class1", "Class2")) | ||
tmpData | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,2 @@ | ||
scriptLocation <- function() system.file("chapters", package = "AppliedPredictiveModeling") | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,59 @@ | ||
transparentTheme <- | ||
function(set = TRUE, pchSize = 1, trans = .2) | ||
{ | ||
library(lattice) | ||
theme <- list(plot.polygon = list(alpha = 1, col = "aliceblue", border = "black", lty = 1, lwd = 1), | ||
background = list(col = "transparent"), | ||
bar.fill = list(col = "#cce6ff"), | ||
box.rectangle = list(col = "black"), | ||
box.umbrella = list(col = "black"), | ||
dot.line = list(col = "#e8e8e8"), | ||
dot.symbol = list(col = "black"), | ||
plot.line = list(col = "black"), | ||
plot.symbol = list(col = "black"), | ||
regions = list(col = | ||
c("#FEF8FA", "#FDF6F9", "#FBF5F9", "#FAF3F8", | ||
"#F8F2F7", "#F7F0F7", "#F5EEF6", "#F4EDF5", | ||
"#F2EBF5", "#F1EAF4", "#EFE8F3", "#EDE7F2", | ||
"#ECE5F1", "#EAE4F1", "#E8E2F0", "#E6E1EF", | ||
"#E4DFEE", "#E2DEED", "#E0DCEC", "#DEDAEB", | ||
"#DCD9EA", "#D9D7E9", "#D7D6E8", "#D4D4E7", | ||
"#D1D2E6", "#CED1E5", "#CCCFE4", "#C8CEE3", | ||
"#C5CCE2", "#C2CAE1", "#BFC9E0", "#BBC7DF", | ||
"#B8C5DF", "#B4C4DE", "#B1C2DD", "#ADC0DC", | ||
"#A9BFDB", "#A6BDDA", "#A2BBD9", "#9EB9D9", | ||
"#9BB8D8", "#97B6D7", "#93B4D6", "#8FB2D5", | ||
"#8BB0D4", "#87AFD3", "#83ADD2", "#7FABD1", | ||
"#7AA9D0", "#76A7CF", "#71A5CE", "#6CA3CC", | ||
"#68A1CB", "#63A0CA", "#5D9EC9", "#589CC8", | ||
"#539AC6", "#4E98C5", "#4996C4", "#4493C3", | ||
"#3F91C1", "#3A8FC0", "#358DBF", "#308BBE", | ||
"#2C89BD", "#2887BC", "#2385BB", "#1F83BA", | ||
"#1C80B9", "#187EB7", "#157CB6", "#127AB5", | ||
"#0F78B3", "#0D76B2", "#0A73B0", "#0971AE", | ||
"#076FAC", "#066DAA", "#056AA7", "#0568A5") | ||
), | ||
strip.shingle = list(col = c( | ||
"#ff7f00", "#00ff00", "#00ffff", | ||
"#ff00ff", "#ff0000", "#ffff00", "#0080ff")), | ||
strip.background = list(col = c( | ||
"#ffe5cc", "#ccffcc", "#ccffff", | ||
"#ffccff", "#ffcccc", "#ffffcc", "#cce6ff")), | ||
reference.line = list(col = "#e8e8e8"), | ||
superpose.line = list( | ||
col = c( | ||
rgb(1, 0, 0, trans), rgb(0, 0, 1, trans), | ||
rgb(0.3984375, 0.7578125, 0.6445312, max(.6, trans)), | ||
rgb(0, 0, 0, trans)), | ||
lty = rep(1:2, 6)), | ||
superpose.symbol = list( | ||
pch = c(16, 15, 17, 18, 16), | ||
cex = rep(pchSize, 5), | ||
col = c( | ||
rgb(1, 0, 0, trans), rgb(0, 0, 1, trans), | ||
rgb(0.3984375, 0.7578125, 0.6445312, max(.6, trans)), | ||
rgb(0, 0, 0, trans)))) | ||
|
||
if(set) trellis.par.set(theme, warn = FALSE) | ||
invisible(theme) | ||
} |
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,12 @@ | ||
AlzheimerDisease: diagnosis predictors | ||
ChemicalManufacturingProcess | ||
FuelEconomy: cars2010 cars2011 cars2012 | ||
abalone | ||
concrete: concrete mixtures | ||
hepatic: bio chem injury | ||
logisticCreditPredictions | ||
permeability: fingerprints permeability | ||
schedulingData | ||
segmentationOriginal | ||
solubility: solTestX solTestXtrans solTestY solTrainX solTrainXtrans solTrainY | ||
twoClassData: classes predictors |
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,9 @@ | ||
\name{NEWS} | ||
\title{News for Package \pkg{AppliedPredictiveModeling}} | ||
\newcommand{\cpkg}{\href{http://CRAN.R-project.org/package=#1}{\pkg{#1}}} | ||
|
||
\section{Changes in version 1.1-1}{ | ||
\itemize{ | ||
\item Initial Version | ||
}} | ||
|
Oops, something went wrong.