Skip to content
forked from MiuLab/D3Q

Discriminative Deep Dyna-Q: Robust Planning for Dialogue Policy Learning

License

Notifications You must be signed in to change notification settings

couragelfyang/D3Q

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Discriminative Deep Dyna-Q: Robust Planning for Dialogue Policy Learning

An implementation of the Discriminative Deep Dyna-Q: Robust Planning for Dialogue Policy Learning

This document describes how to run the simulation of D3Q Agent, please also check the example.sh.

Content

Requirement

main required packages:

  • Python 2.7
  • PyTorch 0.3.1
  • seaborn
  • matplotlib

If you are using conda as package/environment management tool, you can create a environment by the spec-file.txt.

$ conda create --name d3q --file spec-file.txt

Data

all the data is under this folder: ./src/deep_dialog/data

  • Movie Knowledge Bases
    movie_kb.1k.p --- 94% success rate (for user_goals_first_turn_template_subsets.v1.p)
    movie_kb.v2.p --- 36% success rate (for user_goals_first_turn_template_subsets.v1.p)

  • User Goals
    user_goals_first_turn_template.v2.p --- user goals extracted from the first user turn
    user_goals_first_turn_template.part.movie.v1.p --- a subset of user goals [Please use this one, the upper bound success rate on movie_kb.1k.json is 0.9765.]

  • NLG Rule Template
    dia_act_nl_pairs.v6.json --- some predefined NLG rule templates for both User simulator and Agent.

  • Dialog Act Intent
    dia_acts.txt

  • Dialog Act Slot
    slot_set.txt

Parameter

Agent setting

(Note: these are the key difference between the models (DQN, DDQ, and D3Q)
--boosted: boost the world model with examles generated by rule agent [0, 1]
--train_world_model: train the world model or not [0, 1]
--discriminator_nn_type: NN struture of the discriminator (default: RNN) [RNN, MLP]
--train_discriminator: train the discriminator or not [0, 1]
--model_type: model type [DQN, DDQ, D3Q]

Basic setting

--agt: the agent id
--usr: the user (simulator) id
--max_turn: maximum turns
--episodes: how many dialogues to run
--slot_err_prob: slot level err probability
--slot_err_mode: which kind of slot err mode
--intent_err_prob: intent level err probability

Data setting

--movie_kb_path: the movie kb path for agent side
--goal_file_path: the user goal file path for user simulator side

Model setting

--dqn_hidden_size: hidden size for RL agent
--batch_size: batch size for DDQ training
--simulation_epoch_size: how many dialogue to be simulated in one epoch
--warm_start: use rule policy to fill the experience replay buffer at the beginning
--warm_start_epochs: how many dialogues to run in the warm start

Display setting

--run_mode: 0 for display mode (NL); 1 for debug mode (Dia_Act); 2 for debug mode (Dia_Act and NL); 3 for no display (i.e. training)
--act_level: 0 for user simulator is Dia_Act level; 1 for user simulator is NL level
--auto_suggest: 0 for no auto_suggest; 1 for auto_suggest
--cmd_input_mode: 0 for NL input; 1 for Dia_Act input. (this parameter is for AgentCmd only)

Others

--write_model_dir: the directory to write the models
--trained_model_path: the path of the trained RL agent model; load the trained model for prediction purpose.

--learning_phase: train/test/all, default is all. You can split the user goal set into train and test set, or do not split (all); We introduce some randomness at the first sampled user action, even for the same user goal, the generated dialogue might be different.

Running Dialogue Agents

DQN

Basic DQN (DQN(1)):

python run.py --agt 9 --usr 1
--max_turn 40 --movie_kb_path ./deep_dialog/data/movie_kb.1k.p --dqn_hidden_size 80 
--experience_replay_pool_size 10000 --episodes 500 --simulation_epoch_size 1 --run_mode 3 
--act_level 0 --slot_err_prob 0.00 --intent_err_prob 0.00 --batch_size 16 
--goal_file_path ./deep_dialog/data/user_goals_first_turn_template.part.movie.v1.p 
--warm_start 1 --warm_start_epochs 50 
--planning_steps 0 --boosted 1 --train_world_model 0 
--model_type DQN --write_model_dir ./deep_dialog/checkpoints/dqn_1

DQN(5):

python run.py --agt 9 --usr 1
--max_turn 40 --movie_kb_path ./deep_dialog/data/movie_kb.1k.p --dqn_hidden_size 80 
--experience_replay_pool_size 10000 --episodes 500 --simulation_epoch_size 1 --run_mode 3 
--act_level 0 --slot_err_prob 0.00 --intent_err_prob 0.00 --batch_size 16 
--goal_file_path ./deep_dialog/data/user_goals_first_turn_template.part.movie.v1.p 
--warm_start 1 --warm_start_epochs 50 
--planning_steps 4 --boosted 1 --train_world_model 0 
--model_type DQN --write_model_dir ./deep_dialog/checkpoints/dqn_5

Train DQN Agent with k planning steps:

python run.py --agt 9 --usr 1 
--max_turn 40 --movie_kb_path ./deep_dialog/data/movie_kb.1k.p --dqn_hidden_size 80 
--experience_replay_pool_size 10000 --episodes 500 --simulation_epoch_size 1 --run_mode 3 
--act_level 0 --slot_err_prob 0.00 --intent_err_prob 0.00 --batch_size 16 
--goal_file_path ./deep_dialog/data/user_goals_first_turn_template.part.movie.v1.p 
--warm_start 1 --warm_start_epochs 50 
--planning_steps k-1 --boosted 1 --train_world_model 0 
--model_type DQN --write_model_dir ./deep_dialog/checkpoints/dqn_k

DDQ

DDQ(5):

python run.py --agt 9 --usr 1 
--max_turn 40 --movie_kb_path ./deep_dialog/data/movie_kb.1k.p --dqn_hidden_size 80 
--experience_replay_pool_size 10000 --episodes 500 --simulation_epoch_size 1 --run_mode 3 
--act_level 0 --slot_err_prob 0.00 --intent_err_prob 0.00 --batch_size 16 
--goal_file_path ./deep_dialog/data/user_goals_first_turn_template.part.movie.v1.p 
--warm_start 1 --warm_start_epochs 50 --planning_steps 4 --boosted 1 --train_world_model 1 
--model_type DDQ --write_model_dir ./deep_dialog/checkpoints/ddq_5_1

DDQ(k):

python run.py --agt 9 --usr 1 
--max_turn 40 --movie_kb_path ./deep_dialog/data/movie_kb.1k.p --dqn_hidden_size 80 
--experience_replay_pool_size 10000 --episodes 500 --simulation_epoch_size 1 --run_mode 3 
--act_level 0 --slot_err_prob 0.00 --intent_err_prob 0.00 --batch_size 16 
--goal_file_path ./deep_dialog/data/user_goals_first_turn_template.part.movie.v1.p 
--warm_start 1 --warm_start_epochs 50 --planning_steps k-1 --boosted 1 --train_world_model 1 
--model_type DDQ --write_model_dir ./deep_dialog/checkpoints/ddq_k_1

D3Q

D3Q(5):

python run.py --agt 9 --usr 1 
--max_turn 40 --movie_kb_path ./deep_dialog/data/movie_kb.1k.p --dqn_hidden_size 80 
--experience_replay_pool_size 10000 --episodes 500 --simulation_epoch_size 1 --run_mode 3 
--act_level 0 --slot_err_prob 0.00 --intent_err_prob 0.00 --batch_size 16 
--goal_file_path ./deep_dialog/data/user_goals_first_turn_template.part.movie.v1.p 
--warm_start 1 --warm_start_epochs 50 --planning_steps 4 --boosted 1 --train_world_model 1 
--model_type D3Q --discriminator_nn_type RNN --write_model_dir ./deep_dialog/checkpoints/d3q_rnn_5_1

D3Q(k):

python run.py --agt 9 --usr 1 
--max_turn 40 --movie_kb_path ./deep_dialog/data/movie_kb.1k.p --dqn_hidden_size 80 
--experience_replay_pool_size 10000 --episodes 500 --simulation_epoch_size 1 --run_mode 3 
--act_level 0 --slot_err_prob 0.00 --intent_err_prob 0.00 --batch_size 16 
--goal_file_path ./deep_dialog/data/user_goals_first_turn_template.part.movie.v1.p 
--warm_start 1 --warm_start_epochs 50 --planning_steps k-1 --boosted 1 --train_world_model 1 
--model_type D3Q --discriminator_nn_type RNN --write_model_dir ./deep_dialog/checkpoints/d3q_rnn_k_1

Experiments

You can train the model by the example commands above or check the example.sh.

Evaluation

This work focuses on training efficiency, therefore we evaluate the performance by learning curves. Please check the example code in the draw_figure.py.

$ python draw_figure.py 

Reference

Main papers to be cited

@inproceedings{Su2018D3Q,
  title={Discriminative Deep Dyna-Q: Robust Planning for Dialogue Policy Learning},
  author={Su, Shang-Yu and Li, Xiujun and Gao, Jianfeng and Liu, Jingjing and Chen, Yun-Nung},
  booktitle={EMNLP},
  year={2018}
}

@inproceedings{Peng2018DeepDynaQ,
  title={Deep Dyna-Q: Integrating Planning for Task-Completion Dialogue Policy Learning},
  author={Peng, Baolin and Li, Xiujun and Gao, Jianfeng and Liu, Jingjing and Wong, Kam-Fai and Su, Shang-Yu},
  booktitle={ACL},
  year={2018}
}

@article{li2016user,
  title={A User Simulator for Task-Completion Dialogues},
  author={Li, Xiujun and Lipton, Zachary C and Dhingra, Bhuwan and Li, Lihong and Gao, Jianfeng and Chen, Yun-Nung},
  journal={arXiv preprint arXiv:1612.05688},
  year={2016}
}

About

Discriminative Deep Dyna-Q: Robust Planning for Dialogue Policy Learning

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • OpenEdge ABL 99.1%
  • Other 0.9%