The code provided here was used in the TEVAD paper to generate text features. Please note that these codes are not actively maintained and should be used at your own risk. For instructions on setting up the environment, please refer to the README_orig.md
file.
pre-requisites:
sudo apt-get install libopenmpi-dev
pip install -r requirements.txt
To install apex:
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --disable-pip-version-check --no-cache-dir ./
Refer to the Download
section in the original README_orig.md
. For pretrained model, I am currently using VATEX
only.
Take the ucf-crime dataset as an example, set the paths in the below command and run accordingly
python ./src/tasks/dense_caption_mass.py \
--resume_checkpoint path/to/SwinBERT/models/table1/vatex/best-checkpoint/model.bin \
--eval_model_dir path/to/SwinBERT/models/table1/vatex/best-checkpoint/ \
--dataset_path path/to/SwinBERT/datasets/Crime/data/ \
--caption_file path/to/SwinBERT/datasets/Crime/RTFM_train_caption/vatex_all_captions.txt \
--file_type video \
--file_format mp4 \
--do_lower_case \
--dense_caption \
--do_test
Run
python src/tasks/generate_caption_se.py --dataset ucf \
--caption_path path/to/SwinBERT/datasets/Crime/RTFM_train_caption/vatex_all_captions.txt \
--output_path path/to/SwinBERT/datasets/Crime/RTFM_train_caption/sent_emb_n/