A PyTorch project for GigaPixel image detection.
GigaDet is a progressive object detection framework, which consists of a PGN module and a DecDet module.
In this repository, the features below are implemented:
- train for DecDet
- inference for DecDet
- inference for GigaDet (Depends on PGN project codes)
PYTHONPATH=gigadetect:$PYTHONPATH python example/decdet_train.py --config-file configs/GigaDet/GigaDet_COCO_Tiny.yml
PYTHONPATH=gigadetect:$PYTHONPATH python example/decdet_evaluate.py --config-file configs/GigaDet/GigaDet_COCO.yml
Some key config items in config file:
- MODEL.WEIGHTS: Specifies the pre-trained model file.
- DATASETS.VAL_ROOR: Specifies the dataset which should be evaluated.
- MODEL.CFG_FILE_PATH: Specifies the config_file (such as
yolov5s.yaml
) for specific arch corresponding to the loaded model.
PYTHONPATH=.:path/to/pgn/repo python example/detect_panda_image.py --image_path path/to/image --config-file path/to/config/file --save_path path/to/save/result
python example/evaluate_panda_detect_service.py --config-file path/to/config/file
- 2020-08-11: Create the repository.
- 2021-02-02: Start to refactor the repository.
- 2021-03-04: continue to refactor.