Update: 26 April, 2023
This repo is a TensorFlow managed fork of the tflite_flutter_plugin project by the amazing Amish Garg. The goal of this project is to support our Flutter community in creating machine-learning backed apps with the TensorFlow Lite framework.
This project is currently a work-in-progress as we update it to create a working plugin that meets the latest and greatest Flutter and TensorFlow Lite standards. That said, pull requests and contributions are more than welcome and will be reviewed by TensorFlow or Flutter team members. We thank you for your understanding as we make progress on this update.
Feel free to reach out to us by posting in the issues or discussion areas.
Thanks!
- PaulTR
TensorFlow Lite Flutter plugin provides a flexible and fast solution for accessing TensorFlow Lite interpreter and performing inference. The API is similar to the TFLite Java and Swift APIs. It directly binds to TFLite C API making it efficient (low-latency). Offers acceleration support using NNAPI, GPU delegates on Android, Metal and CoreML delegates on iOS, and XNNPack delegate on Desktop platforms.
- Multi-platform Support for Android and iOS
- Flexibility to use any TFLite Model.
- Acceleration using multi-threading.
- Similar structure as TensorFlow Lite Java API.
- Inference speeds close to native Android Apps built using the Java API.
- Run inference in different isolates to prevent jank in UI thread.
Examples and support now support dynamic library downloads! iOS samples can be run with the commands
flutter build ios
& flutter install ios
from their respective iOS folders.
Android can be run with the commands
flutter build android
& flutter install android
while devices are plugged in.
Note: TFLite may not work in the iOS simulator. It's recommended that you test with a physical device.
The helper library has been deprecated. New development underway for a replacement at https://github.com/google/flutter-mediapipe. Current timeline is to have wide support by the end of August, 2023.
import 'package:tflite_flutter/tflite_flutter.dart';
-
From asset
Place
your_model.tflite
inassets
directory. Make sure to include assets inpubspec.yaml
.final interpreter = await tfl.Interpreter.fromAsset('assets/your_model.tflite');
Refer to the documentation for info on creating interpreter from buffer or file.
-
For single input and output
Use
void run(Object input, Object output)
.// For ex: if input tensor shape [1,5] and type is float32 var input = [[1.23, 6.54, 7.81, 3.21, 2.22]]; // if output tensor shape [1,2] and type is float32 var output = List.filled(1*2, 0).reshape([1,2]); // inference interpreter.run(input, output); // print the output print(output);
-
For multiple inputs and outputs
Use
void runForMultipleInputs(List<Object> inputs, Map<int, Object> outputs)
.var input0 = [1.23]; var input1 = [2.43]; // input: List<Object> var inputs = [input0, input1, input0, input1]; var output0 = List<double>.filled(1, 0); var output1 = List<double>.filled(1, 0); // output: Map<int, Object> var outputs = {0: output0, 1: output1}; // inference interpreter.runForMultipleInputs(inputs, outputs); // print outputs print(outputs)
interpreter.close();