Skip to content

BSc. Computer Science thesis about probabilistic Sokoban models

Notifications You must be signed in to change notification settings

bramhaag/stochastic-sokoban

Repository files navigation

Stochastic Sokoban Model Generator

This repository hosts all source code related to the research done for my Bachelor's thesis in Computer Science.

The goal of the research is to create a tool that can generate probabilistic models of Sokoban levels that can be used as part of a larger test suite to benchmark existing probabilistic model checkers.

Scripts

generate_model.py

The generate_model script generates probabilistic models from .sok files. As a .sok file can contain multiple levels, the script can output multiple files. Levels can also be read from stdin by omitting the -i argument, and can be outputted to stdout by omitting the -o argument.

Dependencies: None

Usage:

$ python src/generate_model.py --help
usage: generate_model.py [-i INPUT] [-o OUTPUT] [-f] [-p {sok}] -m {jani,jani-ns,prism,prism-b,prism-ns} [-e PRECISION] [--debug] [-h]

required:
  -m {jani,jani-ns,prism,prism-b,prism-ns}, --model {jani,jani-ns,prism,prism-b,prism-ns}
                        model type

optional:
  -i INPUT, --input INPUT
                        input file path
  -o OUTPUT, --output OUTPUT
                        output file path
  -f, --force           overwrite output file
  -p {sok}, --parser {sok}
                        parser type (default: sok)
  -e PRECISION, --precision PRECISION
                        precision of floating point numbers (default: 28)
  --debug               enable debug logging
  -h, --help            show this help message and exit

Example usage:

# Generate JANI models from the Microban level set
$ python src/generate_model.py -m jani -i test_sets/microban.sok -o generated_models/microban/jani/microban.jani

# Generate PRISM models from the XSokoban level set
$ python src/generate_model.py -m prism -i test_sets/xsokoban.sok -o generated_models/xsokoban/prism/xsokoban.jani

generate_image.py

This script can convert .sok files into image representations of the levels. Supplying levels using stdin is also supported, as well as outputting the resulting png into stdout.

Dependencies: Pillow==9.1.1

Usage:

$ python src/generate_image.py --help
usage: generate_image.py [-i INPUT] [-o OUTPUT] [-ix INDICES [INDICES ...]] [-f] [-t] [-h]

optional:
  -i INPUT, --input INPUT
                        input file path
  -o OUTPUT, --output OUTPUT
                        output file path
  -ix INDICES [INDICES ...], --indices INDICES [INDICES ...]
                        space seperated list of level indices. Omit to use all levels
  -f, --force           overwrite output file
  -t, --text            display tile position indices
  -h, --help            show this help message and exit

run_benchmark.py

This script automates the running of benchmarks. Most arguments (engine, property etc.) are not validated, so it is wise to store and check the log using the -l argument and verify that the model checker is producing results.

The script can be killed (^C) and resumed at a later time by rerunning the benchmark with the same output file.

Dependencies: None

Usage:

$ python src/run_benchmark.py --help
usage: run_benchmark.py -c {prism,storm,modest} -e ENGINE -mu MU [MU ...] -p PROPERTY [-t TIMEOUT] [-m MEMORY] [-l LOG] [--debug] [-h] input output

required:
  input                 input path. Supports glob patterns to run multiple files
  output                output result file path
  -c {prism,storm,modest}, --checker {prism,storm,modest}
                        model checker
  -e ENGINE, --engine ENGINE
                        engine to use
  -mu MU [MU ...]       values for mu. Can be a space-separated list of floating point numbers,or a string in the min:max:num steps (e.g 0:1:4 yields
                        0.00, 0.25, 0.50, 0.75, 1.00)
  -p PROPERTY, --property PROPERTY
                        property to benchmark

optional:
  -t TIMEOUT, --timeout TIMEOUT
                        timeout in seconds (default: 300)
  -m MEMORY, --memory MEMORY
                        memory limit (in MB) (default: 6144)
  -l LOG, --log LOG     output log file path
  --debug               enable debug logging
  -h, --help            show this help message and exit

Example usage:

# Benchmark the Microban set using Storm's hybrid engine for mu=0.3 and mu=0.9. Also store the log file.
# Be mindful to quote glob patterns
$ python src/run_benchmark.py "generated_models/microban/jani/*.jani" benchmarks/storm_hybrid.json -c storm -e hybrid -mu 0.3 0.9 -l benchmarks/storm_hybrid.txt -p goal_reached

# Benchmark the Microban set using Modest's mcsta engine for mu=0, 0.25, 0.50, 0.75, 1.
$ python src/run_benchmark.py "generated_models/microban/jani/*.jani" benchmarks/modest_mcsta.json -c modest -e mcsta -mu 0:1:4 -l benchmarks/modest_mcsta.txt -p goal_reached

# Benchmark the Microban set using PRISM's hybrid engine for mu=0.5.
# Properties are not stored in the model file, so they have to be supplied here.
$ python src/run_benchmark.py "generated_models/microban/prism/*.prism" benchmarks/prism_hybrid.json -c prism -e hybrid -mu 0.5 -l benchmarks/prism_hybrid.txt -p "Pmax=? [F \"goal_reached\"]"

run_experiment.py

Run a PRISM experiment.

The script can be killed (^C) and resumed at a later time by rerunning the experiment with the same output file.

Usage:

$ python src/run_experiment.py --help
usage: run_experiment.py -mu MU -p PROPERTY [-t TIMEOUT] [-m MEMORY] [-l LOG] [--debug] [-h] input output

required:
  input                 input path. Supports glob patterns to run multiple files
  output                output result file path
  -mu MU                values for mu in min:step:max format
  -p PROPERTY, --property PROPERTY
                        property to use for experiment

optional:
  -t TIMEOUT, --timeout TIMEOUT
                        timeout in seconds (default: 300)
  -m MEMORY, --memory MEMORY
                        memory limit (in MB) (default: 6144)
  -l LOG, --log LOG     output log file path
  --debug               enable debug logging
  -h, --help            show this help message and exit

Example usage:

# Calculate Pmax=? [F goal_reached] for all levels with mu=0,0.1,0.2,..,0.9,1
python src/run_experiment.py "generated_models/microban/prism/*.prism" experiments/prism.json -mu 0:0.1:1 -p "Pmax=? [F \"goal_reached\"]" -l experiments/prism.log

About

BSc. Computer Science thesis about probabilistic Sokoban models

Topics

Resources

Stars

Watchers

Forks