RegNet (Designing Network Design Spaces) implementation in TensorFlow-2 with pretrained weights.
- Python ≥ 3.7
- TensorFlow ≥ 2.5
Model name | Model name in paper | Pretrained weights | Top-1 (%) |
---|---|---|---|
RegNetX_400MF | REGNETX-400MF | RegNetX_400MF.h5 | 72.87 |
RegNetX_800MF | REGNETX-800MF | RegNetX_800MF.h5 | 75.21 |
RegNetX_1_6GF | REGNETX-1.6GF | RegNetX_1_6GF.h5 | 77.11 |
RegNetX_3_2GF | REGNETX-3.2GF | RegNetX_3_2GF.h5 | 78.33 |
RegNetX_8GF | REGNETX-8.0GF | RegNetX_8GF.h5 | 79.36 |
RegNetX_16GF | REGNETX-16GF | RegNetX_16GF.h5 | 79.98 |
RegNetX_32GF | REGNETX-32GF | RegNetX_32GF.h5 | 80.58 |
Model name | Model name in paper | Pretrained weights | Top-1 (%) |
---|---|---|---|
RegNetY_400MF | REGNETY-400MF | RegNetY_400MF.h5 | 74.02 |
RegNetY_800MF | REGNETY-800MF | RegNetY_800MF.h5 | 76.44 |
RegNetY_1_6GF | REGNETY-1.6GF | RegNetY_1_6GF.h5 | 77.98 |
RegNetY_3_2GF | REGNETY-3.2GF | RegNetY_3_2GF.h5 | 78.94 |
RegNetY_8GF | REGNETY-8.0GF | RegNetY_8GF.h5 | 80.05 |
RegNetY_16GF | REGNETY-16GF | RegNetY_16GF.h5 | 80.43 |
RegNetY_32GF | REGNETY-32GF | RegNetY_32GF.h5 | 80.84 |
- Pretrained weights are converted from TorchVision model zoo,
and we only provide models of certain flop regimes that are available in the model zoo.
Script for conversion is
data/scripts/convert.py
. - Top-1: 224x224 single-crop, top-1 accuracy using converted weights. Reproduce by:
# You need to register on http://www.image-net.org/download-images to get the link to
# download ILSVRC2012_img_val.tar.
mkdir ILSVRC2012_img_val/
tar xvf ILSVRC2012_img_val.tar -C ILSVRC2012_img_val/
python data/scripts/eval.py --h5 path/to/pretrained.h5 --data_dir ILSVRC2012_img_val/ --batch_size 32
import regnet
# Specify include_top=False if you want to remove the classification layer at the top
model = regnet.RegNetX_1_6GF(input_shape=(224, 224, 3),
weights="path/to/RegNetX_1_6GF.h5",
include_top=True)
model.compile(...)
model.fit(...)
Note: Input images should be loaded in to a range of [0, 1] and then normalized using
mean = [0.485, 0.456, 0.406]
and std = [0.229, 0.224, 0.225]
.
MIT