-
Notifications
You must be signed in to change notification settings - Fork 1
bips-hb/IMLSA_2024
Folders and files
| Name | Name | Last commit message | Last commit date | |
|---|---|---|---|---|
Repository files navigation
Interpretable Machine Learning for Survival Analysis Sophie Hanna Langbein, Mateusz Krzyziński, Mikołaj Spytek, Hubert Baniecki, Przemysław Biecek, Marvin N. Wright Author of the code: Sophie Hanna Langbein ([email protected], [email protected]) The R code can be found in utils.R, plotting_functions.R, simulation_example_ice_pdp.R and simulation_example_ale.R, simulation_example_fi.R, real_data_example.R The code files need to be run in the following order: simulation_example_ice_pdp.R -> simulation_example_ale.R -> simulation_example_fi.R -> real_data_example.R Files and Folder structure: Folders: data: folder containing the data to be analyzed figures_iml: folder in which all figures generated in the code and contained in the paper are saved files: utils.R: code file containing helper functions plotting_functions.R: code file containing plotting functions simulation_example_ice_pdp.R: code file containing the simulation example for permutation feature importance, individual conditional expectation plots and partial dependence plots in the methods section of the paper simulation_example_ale.R: code file containing the simulation example for accumulated local effects plots in the methods section of the paper simulation_example_fi.R: code file containing the simulation example for the feature interaction H-statistics plots in the methods section of the paper real_data_example.R: code file containing the example of an IML analysis on real data (GBSG2 dataset) The code was produced with the following versions of R and packages: R version 4.5.1 (2025-06-13) Platform: aarch64-apple-darwin20 Running under: macOS Sequoia 15.6.1 Matrix products: default BLAS: /System/Library/Frameworks/Accelerate.framework/Versions/A/Frameworks/vecLib.framework/Versions/A/libBLAS.dylib LAPACK: /Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/lib/libRlapack.dylib; LAPACK version 3.12.1 locale: [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8 time zone: Europe/Berlin tzcode source: internal attached base packages: [1] stats graphics grDevices utils datasets methods base other attached packages: [1] rlang_1.1.6 dplyr_1.1.4 ggbeeswarm_0.7.2 survAUC_1.3-0 [5] data.table_1.17.8 pec_2025.06.24 prodlim_2025.04.28 survminer_0.5.1 [9] ggpubr_0.6.1 ggplot2_4.0.0 ggnewscale_0.5.2 randomForestSRC_3.4.1 [13] ranger_0.17.0 survex_1.2.0 survival_3.8-3 simsurv_1.0.0 loaded via a namespace (and not attached): [1] RColorBrewer_1.1-3 rstudioapi_0.17.1 jsonlite_2.0.0 shape_1.4.6.1 [5] magrittr_2.0.4 TH.data_1.1-4 farver_2.1.2 DALEX_2.5.2 [9] rmarkdown_2.29 vctrs_0.6.5 base64enc_0.1-3 rstatix_0.7.2 [13] htmltools_0.5.8.1 polspline_1.1.25 broom_1.0.10 Formula_1.2-5 [17] parallelly_1.45.1 htmlwidgets_1.6.4 plyr_1.8.9 sandwich_3.1-1 [21] zoo_1.8-14 commonmark_2.0.0 lifecycle_1.0.4 cmprsk_2.2-12 [25] iterators_1.0.14 pkgconfig_2.0.3 Matrix_1.7-3 R6_2.6.1 [29] fastmap_1.2.0 future_1.67.0 digest_0.6.37 numDeriv_2016.8-1.1 [33] colorspace_2.1-1 patchwork_1.3.2 rprojroot_2.1.1 Hmisc_5.2-3 [37] labeling_0.4.3 progressr_0.15.1 km.ci_0.5-6 abind_1.4-8 [41] riskRegression_2025.09.17 compiler_4.5.1 here_1.0.2 withr_3.0.2 [45] htmlTable_2.4.3 S7_0.2.0 backports_1.5.0 carData_3.0-5 [49] ggsignif_0.6.4 MASS_7.3-65 lava_1.8.1 quantreg_6.1 [53] tools_4.5.1 vipor_0.4.7 foreign_0.8-90 beeswarm_0.4.0 [57] future.apply_1.20.0 nnet_7.3-20 doFuture_1.1.2 glue_1.8.0 [61] DiagrammeR_1.0.11 mets_1.3.7 nlme_3.1-168 gridtext_0.1.5 [65] grid_4.5.1 checkmate_2.3.3 cluster_2.1.8.1 reshape2_1.4.4 [69] generics_0.1.4 kernelshap_0.9.0 gtable_0.3.6 KMsurv_0.1-6 [73] tidyr_1.3.1 xml2_1.4.0 car_3.1-3 foreach_1.5.2 [77] pillar_1.11.1 markdown_2.0 stringr_1.5.2 splines_4.5.1 [81] ggtext_0.1.2 lattice_0.22-7 SparseM_1.84-2 tidyselect_1.2.1 [85] rms_8.0-0 knitr_1.50 gridExtra_2.3 litedown_0.7 [89] xfun_0.53 visNetwork_2.1.4 stringi_1.8.7 evaluate_1.0.5 [93] codetools_0.2-20 data.tree_1.2.0 tibble_3.3.0 cli_3.6.5 [97] rpart_4.1.24 xtable_1.8-4 survMisc_0.5.6 Rcpp_1.1.0 [101] globals_0.18.0 parallel_4.5.1 MatrixModels_0.5-4 listenv_0.9.1 [105] glmnet_4.1-10 viridisLite_0.4.2 mvtnorm_1.3-3 timereg_2.0.7 [109] scales_1.4.0 purrr_1.1.0 crayon_1.5.3 cowplot_1.2.0 [113] multcomp_1.4-28
About
This repository contains code accompanying the paper "Interpretable Machine Learning for Survival Analysis"
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published