-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
chore(detection): run detection jobs in parallel
- Loading branch information
1 parent
6c5390d
commit fa0ebe0
Showing
4 changed files
with
121 additions
and
10 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,34 +1,116 @@ | ||
# Ultralytics YOLO 🚀, AGPL-3.0 license | ||
# Default training settings and hyperparameters for medium-augmentation COCO training | ||
|
||
task: detect # YOLO task, i.e. detect, segment, classify, pose | ||
task: # YOLO task, i.e. detect, segment, classify, pose | ||
mode: predict # YOLO mode, i.e. train, val, predict, export, track, benchmark | ||
project: | ||
|
||
# Train settings ------------------------------------------------------------------------------------------------------- | ||
model: yolov8n.pt # path to model file, i.e. yolov8n.pt, yolov8n.yaml | ||
model: # path to model file, i.e. yolov8n.pt, yolov8n.yaml | ||
data: # path to data file, i.e. coco128.yaml | ||
epochs: 100 # number of epochs to train for | ||
patience: 50 # epochs to wait for no observable improvement for early stopping of training | ||
batch: 16 # number of images per batch (-1 for AutoBatch) | ||
imgsz: 640 # size of input images as integer or w,h | ||
save: True # save train checkpoints and predict results | ||
save_period: -1 # Save checkpoint every x epochs (disabled if < 1) | ||
cache: False # True/ram, disk or False. Use cache for data loading | ||
device: # device to run on, i.e. cuda device=0 or device=0,1,2,3 or device=cpu | ||
workers: 8 # number of worker threads for data loading (per RANK if DDP) | ||
project: # project name | ||
name: # experiment name, results saved to 'project/name' directory | ||
exist_ok: False # whether to overwrite existing experiment | ||
pretrained: False # whether to use a pretrained model | ||
optimizer: SGD # optimizer to use, choices=['SGD', 'Adam', 'AdamW', 'RMSProp'] | ||
verbose: True # whether to print verbose output | ||
seed: 0 # random seed for reproducibility | ||
deterministic: True # whether to enable deterministic mode | ||
single_cls: False # train multi-class data as single-class | ||
image_weights: False # use weighted image selection for training | ||
rect: False # rectangular training if mode='train' or rectangular validation if mode='val' | ||
cos_lr: False # use cosine learning rate scheduler | ||
close_mosaic: 0 # (int) disable mosaic augmentation for final epochs | ||
resume: False # resume training from last checkpoint | ||
amp: True # Automatic Mixed Precision (AMP) training, choices=[True, False], True runs AMP check | ||
# Segmentation | ||
overlap_mask: True # masks should overlap during training (segment train only) | ||
mask_ratio: 4 # mask downsample ratio (segment train only) | ||
# Classification | ||
dropout: 0.0 # use dropout regularization (classify train only) | ||
|
||
# Prediction settings -------------------------------------------------------------------------------------------------- | ||
# Val/Test settings ---------------------------------------------------------------------------------------------------- | ||
val: True # validate/test during training | ||
split: val # dataset split to use for validation, i.e. 'val', 'test' or 'train' | ||
save_json: True # save results to JSON file | ||
save_hybrid: False # save hybrid version of labels (labels + additional predictions) | ||
conf: 0.32 # object confidence threshold for detection (default 0.25 predict, 0.001 val) | ||
iou: 0.7 # intersection over union (IoU) threshold for NMS | ||
max_det: 300 # maximum number of detections per image | ||
half: False # use half precision (FP16) | ||
dnn: False # use OpenCV DNN for ONNX inference | ||
plots: True # save plots during train/val | ||
|
||
# Prediction settings -------------------------------------------------------------------------------------------------- | ||
source: # source directory for images or videos | ||
show: False # show results if possible | ||
save_txt: True # save results as .txt file | ||
save_json: True | ||
save_conf: True # save results with confidence scores | ||
save_crop: True # save cropped images with results | ||
show_labels: True # show object labels in plots | ||
show_conf: True # show object confidence scores in plots | ||
vid_stride: 8 # video frame-rate stride | ||
vid_stride: 24 # video frame-rate stride | ||
line_thickness: 3 # bounding box thickness (pixels) | ||
visualize: False # visualize model features | ||
augment: False # apply image augmentation to prediction sources | ||
agnostic_nms: False # class-agnostic NMS | ||
classes: # filter results by class, i.e. class=0, or class=[0,2,3] | ||
retina_masks: False # use high-resolution segmentation masks | ||
boxes: True # Show boxes in segmentation predictions | ||
|
||
# Export settings ------------------------------------------------------------------------------------------------------ | ||
format: torchscript # format to export to | ||
keras: False # use Keras | ||
optimize: False # TorchScript: optimize for mobile | ||
int8: False # CoreML/TF INT8 quantization | ||
dynamic: False # ONNX/TF/TensorRT: dynamic axes | ||
simplify: False # ONNX: simplify model | ||
opset: # ONNX: opset version (optional) | ||
workspace: 4 # TensorRT: workspace size (GB) | ||
nms: False # CoreML: add NMS | ||
|
||
# Hyperparameters ------------------------------------------------------------------------------------------------------ | ||
lr0: 0.01 # initial learning rate (i.e. SGD=1E-2, Adam=1E-3) | ||
lrf: 0.01 # final learning rate (lr0 * lrf) | ||
momentum: 0.937 # SGD momentum/Adam beta1 | ||
weight_decay: 0.0005 # optimizer weight decay 5e-4 | ||
warmup_epochs: 3.0 # warmup epochs (fractions ok) | ||
warmup_momentum: 0.8 # warmup initial momentum | ||
warmup_bias_lr: 0.1 # warmup initial bias lr | ||
box: 7.5 # box loss gain | ||
cls: 0.5 # cls loss gain (scale with pixels) | ||
dfl: 1.5 # dfl loss gain | ||
pose: 12.0 # pose loss gain | ||
kobj: 1.0 # keypoint obj loss gain | ||
label_smoothing: 0.0 # label smoothing (fraction) | ||
nbs: 64 # nominal batch size | ||
hsv_h: 0.015 # image HSV-Hue augmentation (fraction) | ||
hsv_s: 0.7 # image HSV-Saturation augmentation (fraction) | ||
hsv_v: 0.4 # image HSV-Value augmentation (fraction) | ||
degrees: 0.0 # image rotation (+/- deg) | ||
translate: 0.1 # image translation (+/- fraction) | ||
scale: 0.5 # image scale (+/- gain) | ||
shear: 0.0 # image shear (+/- deg) | ||
perspective: 0.0 # image perspective (+/- fraction), range 0-0.001 | ||
flipud: 0.0 # image flip up-down (probability) | ||
fliplr: 0.5 # image flip left-right (probability) | ||
mosaic: 1.0 # image mosaic (probability) | ||
mixup: 0.0 # image mixup (probability) | ||
copy_paste: 0.0 # segment copy-paste (probability) | ||
|
||
# Custom config.yaml --------------------------------------------------------------------------------------------------- | ||
cfg: # for overriding defaults.yaml | ||
|
||
# Debug, do not modify ------------------------------------------------------------------------------------------------- | ||
v5loader: False # use legacy YOLOv5 dataloader | ||
|
||
# Tracker settings ------------------------------------------------------------------------------------------------------ | ||
tracker: botsort.yaml # tracker type, ['botsort.yaml', 'bytetrack.yaml'] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters