Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[huggingface_pytorch] Training - DLC for Transformers to 4.46.1 - Accelerate 1.1.0 - PyTorch 2.3 #4393

Merged
merged 17 commits into from
Nov 11, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
32 changes: 32 additions & 0 deletions huggingface/pytorch/training/buildspec-2-1.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,32 @@
account_id: &ACCOUNT_ID <set-$ACCOUNT_ID-in-environment>
region: &REGION <set-$REGION-in-environment>
base_framework: &BASE_FRAMEWORK pytorch
framework: &FRAMEWORK !join [ "huggingface_", *BASE_FRAMEWORK]
version: &VERSION 2.1.0
short_version: &SHORT_VERSION "2.1"
contributor: huggingface
arch_type: x86

repository_info:
training_repository: &TRAINING_REPOSITORY
image_type: &TRAINING_IMAGE_TYPE training
root: !join [ "huggingface/", *BASE_FRAMEWORK, "/", *TRAINING_IMAGE_TYPE ]
repository_name: &REPOSITORY_NAME !join ["pr", "-", "huggingface", "-", *BASE_FRAMEWORK, "-", *TRAINING_IMAGE_TYPE]
repository: &REPOSITORY !join [ *ACCOUNT_ID, .dkr.ecr., *REGION, .amazonaws.com/, *REPOSITORY_NAME ]

images:
BuildHuggingFacePytorchGpuPy310Cu121TrainingDockerImage:
<<: *TRAINING_REPOSITORY
build: &HUGGINGFACE_PYTORCH_GPU_TRAINING_PY3 false
image_size_baseline: &IMAGE_SIZE_BASELINE 21500
device_type: &DEVICE_TYPE gpu
python_version: &DOCKER_PYTHON_VERSION py3
tag_python_version: &TAG_PYTHON_VERSION py310
cuda_version: &CUDA_VERSION cu121
os_version: &OS_VERSION ubuntu20.04
transformers_version: &TRANSFORMERS_VERSION 4.36.0
datasets_version: &DATASETS_VERSION 2.18.0
tag: !join [ *VERSION, '-', 'transformers', *TRANSFORMERS_VERSION, '-', *DEVICE_TYPE, '-', *TAG_PYTHON_VERSION, '-',
*CUDA_VERSION, '-', *OS_VERSION ]
docker_file: !join [ docker/, *SHORT_VERSION, /, *DOCKER_PYTHON_VERSION, /,
*CUDA_VERSION, /Dockerfile., *DEVICE_TYPE ]
12 changes: 6 additions & 6 deletions huggingface/pytorch/training/buildspec.yml
Original file line number Diff line number Diff line change
Expand Up @@ -2,8 +2,8 @@ account_id: &ACCOUNT_ID <set-$ACCOUNT_ID-in-environment>
region: &REGION <set-$REGION-in-environment>
base_framework: &BASE_FRAMEWORK pytorch
framework: &FRAMEWORK !join [ "huggingface_", *BASE_FRAMEWORK]
version: &VERSION 2.1.0
short_version: &SHORT_VERSION "2.1"
version: &VERSION 2.3.0
short_version: &SHORT_VERSION "2.3"
contributor: huggingface
arch_type: x86

Expand All @@ -15,17 +15,17 @@ repository_info:
repository: &REPOSITORY !join [ *ACCOUNT_ID, .dkr.ecr., *REGION, .amazonaws.com/, *REPOSITORY_NAME ]

images:
BuildHuggingFacePytorchGpuPy310Cu121TrainingDockerImage:
BuildHuggingFacePytorchGpuPy311Cu121TrainingDockerImage:
<<: *TRAINING_REPOSITORY
build: &HUGGINGFACE_PYTORCH_GPU_TRAINING_PY3 false
image_size_baseline: &IMAGE_SIZE_BASELINE 21500
device_type: &DEVICE_TYPE gpu
python_version: &DOCKER_PYTHON_VERSION py3
tag_python_version: &TAG_PYTHON_VERSION py310
tag_python_version: &TAG_PYTHON_VERSION py311
cuda_version: &CUDA_VERSION cu121
os_version: &OS_VERSION ubuntu20.04
transformers_version: &TRANSFORMERS_VERSION 4.36.0
datasets_version: &DATASETS_VERSION 2.18.0
transformers_version: &TRANSFORMERS_VERSION 4.46.1
datasets_version: &DATASETS_VERSION 3.1.0
tag: !join [ *VERSION, '-', 'transformers', *TRANSFORMERS_VERSION, '-', *DEVICE_TYPE, '-', *TAG_PYTHON_VERSION, '-',
*CUDA_VERSION, '-', *OS_VERSION ]
docker_file: !join [ docker/, *SHORT_VERSION, /, *DOCKER_PYTHON_VERSION, /,
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,63 @@
# https://github.com/aws/deep-learning-containers/blob/master/available_images.md
# refer to the above page to pull latest Pytorch image

# docker image region us-west-2
FROM 763104351884.dkr.ecr.us-west-2.amazonaws.com/pytorch-training:2.3.0-gpu-py311-cu121-ubuntu20.04-sagemaker

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

ubuntu 20 is reaching EOL, can we use a later version?
https://ubuntu.com/about/release-cycle

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Hi @e-davidson, we will use ubuntu 22.04 from PyTorch 2.4 DLCs.


LABEL maintainer="Amazon AI"
LABEL dlc_major_version="1"

# version args
ARG TRANSFORMERS_VERSION
ARG DATASETS_VERSION
ARG HUGGINGFACE_HUB_VERSION=0.25.1
ARG DIFFUSERS_VERSION=0.31.0
ARG EVALUATE_VERSION=0.4.3
ARG ACCELERATE_VERSION=1.1.0
ARG TRL_VERSION=0.11.4
ARG PEFT_VERSION=0.13.2
ARG FLASH_ATTN_VERSION=2.6.3
ARG PYTHON=python3

# TODO: Remove when the base image is updated
RUN pip install --upgrade "pip==24.1.2" \
&& pip uninstall -y transformer-engine flash-attn pyarrow cryptography \
&& pip install --no-cache-dir -U pyarrow cryptography pyopenssl Pillow \
&& pip --no-cache-dir install --upgrade wheel setuptools \
&& pip install --no-cache-dir -U "werkzeug==3.0.6"

# install Hugging Face libraries and its dependencies
RUN pip install --no-cache-dir \
# hf_transfer will be a built-in feature, remove the extra then
huggingface_hub[hf_transfer]==${HUGGINGFACE_HUB_VERSION} \
transformers[sklearn,sentencepiece,audio,vision,pipelines]==${TRANSFORMERS_VERSION} \
datasets==${DATASETS_VERSION} \
diffusers==${DIFFUSERS_VERSION} \
Jinja2 \
tensorboard \
bitsandbytes \
evaluate==${EVALUATE_VERSION} \
accelerate==${ACCELERATE_VERSION} \
trl==${TRL_VERSION} \
peft==${PEFT_VERSION} \
flash-attn==${FLASH_ATTN_VERSION}

# hf_transfer will be a built-in feature, remove the env variavle then
ENV HF_HUB_ENABLE_HF_TRANSFER="1"

RUN apt-get update \
# TODO: Remove upgrade statements once packages are updated in base image
&& apt-get -y upgrade --only-upgrade systemd openssl cryptsetup libkrb5-3 \
&& apt install -y git git-lfs \
&& apt-get clean \
&& rm -rf /var/lib/apt/lists/*

RUN HOME_DIR=/root \
&& curl -o ${HOME_DIR}/oss_compliance.zip https://aws-dlinfra-utilities.s3.amazonaws.com/oss_compliance.zip \
&& unzip -o ${HOME_DIR}/oss_compliance.zip -d ${HOME_DIR}/ \
&& cp ${HOME_DIR}/oss_compliance/test/testOSSCompliance /usr/local/bin/testOSSCompliance \
&& chmod +x /usr/local/bin/testOSSCompliance \
&& chmod +x ${HOME_DIR}/oss_compliance/generate_oss_compliance.sh \
&& ${HOME_DIR}/oss_compliance/generate_oss_compliance.sh ${HOME_DIR} ${PYTHON} \
&& rm -rf ${HOME_DIR}/oss_compliance*

Original file line number Diff line number Diff line change
Expand Up @@ -34,8 +34,9 @@ def test_distilbert_base(
# hyperparameters, which are passed into the training job
hyperparameters = {
"max_steps": 5,
"warmup_steps": 3,
"train_batch_size": 4,
"model_name": "distilbert-base-uncased",
"model_name": "distilbert/distilbert-base-uncased",
}

estimator = HuggingFace(
Expand Down Expand Up @@ -67,8 +68,9 @@ def test_distilbert_base_torch_compiled(
# hyperparameters, which are passed into the training job
hyperparameters = {
"max_steps": 5,
"warmup_steps": 3,
"train_batch_size": 4,
"model_name": "distilbert-base-uncased",
"model_name": "distilbert/distilbert-base-uncased",
}

estimator = HuggingFace(
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -39,7 +39,7 @@ def test_single_node_single_gpu_tcc_default(
hyperparameters = {
"max_steps": 3,
"train_batch_size": 4,
"model_name": "distilbert-base-uncased",
"model_name": "distilbert/distilbert-base-uncased",
}

estimator = HuggingFace(
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -33,7 +33,7 @@


hyperparameters = {
"model_name_or_path": "bert-large-uncased-whole-word-masking",
"model_name_or_path": "google-bert/bert-large-uncased-whole-word-masking-finetuned-squad",
"dataset_name": "squad",
"do_train": True,
"do_eval": True,
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,7 @@
parser.add_argument("--train-batch-size", type=int, default=32)
parser.add_argument("--eval-batch-size", type=int, default=64)
parser.add_argument("--warmup_steps", type=int, default=500)
parser.add_argument("--max_steps", type=int, default=5000)
parser.add_argument("--model_name", type=str)
parser.add_argument("--learning_rate", type=str, default=5e-5)

Expand All @@ -44,15 +45,15 @@
tokenizer = AutoTokenizer.from_pretrained(args.model_name)

# load dataset
dataset = load_dataset("imdb")
dataset = load_dataset("stanfordnlp/imdb")
metric = evaluate.load("accuracy")

# tokenizer helper function
def tokenize(batch):
return tokenizer(batch["text"], padding="max_length", truncation=True)
return tokenizer(batch["text"], padding="max_length", max_length=512, truncation=True)

# load dataset
train_dataset, test_dataset = load_dataset("imdb", split=["train", "test"])
train_dataset, test_dataset = load_dataset("stanfordnlp/imdb", split=["train", "test"])
test_dataset = test_dataset.shuffle().select(
range(100)
) # smaller the size for test dataset to 10k
Expand Down Expand Up @@ -84,7 +85,8 @@ def compute_metrics(eval_pred):
per_device_train_batch_size=args.train_batch_size,
per_device_eval_batch_size=args.eval_batch_size,
warmup_steps=args.warmup_steps,
evaluation_strategy="epoch",
max_steps=args.max_steps,
eval_strategy="epoch",
logging_dir=f"{args.output_data_dir}/logs",
learning_rate=float(args.learning_rate),
)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,7 @@
parser.add_argument("--train-batch-size", type=int, default=32)
parser.add_argument("--eval-batch-size", type=int, default=64)
parser.add_argument("--warmup_steps", type=int, default=500)
parser.add_argument("--max_steps", type=int, default=5000)
parser.add_argument("--model_name", type=str)
parser.add_argument("--learning_rate", type=str, default=5e-5)

Expand Down Expand Up @@ -52,7 +53,7 @@

# tokenizer helper function
def tokenize(batch):
return tokenizer(batch["text"], padding="max_length", truncation=True)
return tokenizer(batch["text"], padding="max_length", max_length=512, truncation=True)

# load dataset
train_dataset, test_dataset = load_dataset("imdb", split=["train", "test"])
Expand Down Expand Up @@ -87,7 +88,8 @@ def compute_metrics(eval_pred):
per_device_train_batch_size=args.train_batch_size,
per_device_eval_batch_size=args.eval_batch_size,
warmup_steps=args.warmup_steps,
evaluation_strategy="epoch",
max_steps=args.max_steps,
eval_strategy="epoch",
logging_dir=f"{args.output_data_dir}/logs",
learning_rate=float(args.learning_rate),
torch_compile=not args.disable_torch_compile, # optimizations
Expand Down
Loading