Skip to content

astronomer/airflow-provider-duckdb

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

20 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

airflow-provider-duckdb

A DuckDB provider for Airflow. This provider exposes a hook/connection that returns a DuckDB connection.

This works for either local or MotherDuck connections.

Installation

pip install airflow-provider-duckdb

Connection

The connection type is duckdb. It supports setting the following parameters:

Airflow field name Airflow UI label Description
host Path to local database file Path to local file. Leave blank (with no password) for in-memory database.
schema MotherDuck database name Name of the MotherDuck database. Leave blank for default.
password MotherDuck Service token MotherDuck Service token. Leave blank for local database.

These have been relabeled in the Airflow UI for clarity.

For example, if you want to connect to a local file:

Airflow field name Airflow UI label Value
host Path to local database file /path/to/file.db
schema MotherDuck database name (leave blank)
password MotherDuck Service token (leave blank)

If you want to connect to a MotherDuck database:

Airflow field name Airflow UI label Value
host Path to local database file (leave blank)
schema MotherDuck database name <YOUR_DB_NAME>, or leave blank for default
password MotherDuck Service token <YOUR_SERVICE_TOKEN>

Usage

import pandas as pd
import pendulum

from airflow.decorators import dag, task
from duckdb_provider.hooks.duckdb_hook import DuckDBHook


@dag(
    schedule=None,
    start_date=pendulum.datetime(2022, 1, 1, tz="UTC"),
    catchup=False,
)
def duckdb_transform():
    @task
    def create_df() -> pd.DataFrame:
        """
        Create a dataframe with some sample data
        """
        df = pd.DataFrame(
            {
                "a": [1, 2, 3],
                "b": [4, 5, 6],
                "c": [7, 8, 9],
            }
        )
        return df

    @task
    def simple_select(df: pd.DataFrame) -> pd.DataFrame:
        """
        Use DuckDB to select a subset of the data
        """
        hook = DuckDBHook.get_hook('duckdb_default')
        conn = hook.get_conn()

        # execute a simple query
        res = conn.execute("SELECT a, b, c FROM df WHERE a >= 2").df()

        return res

    @task
    def add_col(df: pd.DataFrame) -> pd.DataFrame:
        """
        Use DuckDB to add a column to the data
        """
        hook = DuckDBHook.get_hook('duckdb_default')
        conn = hook.get_conn()

        # add a column
        conn.execute("CREATE TABLE tb AS SELECT *, a + b AS d FROM df")

        # get the table
        return conn.execute("SELECT * FROM tb").df()

    @task
    def aggregate(df: pd.DataFrame) -> pd.DataFrame:
        """
        Use DuckDB to aggregate the data
        """
        hook = DuckDBHook.get_hook('duckdb_default')
        conn = hook.get_conn()

        # aggregate
        return conn.execute("SELECT SUM(a), COUNT(b) FROM df").df()

    create_df_res = create_df()
    simple_select_res = simple_select(create_df_res)
    add_col_res = add_col(simple_select_res)
    aggregate_res = aggregate(add_col_res)


duckdb_transform()