Skip to content

argusswift/New-SSD

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

New-SSD

High precision and fast speed for SSD

Model VOC2007 test VOC2012 test FPS (TitanX) #Boxes Input resolution
SSD300 (VGG16) 77.2 75.8 46 8732 300 x 300
SSD512 (VGG16) 79.8 78.5 19 24564 512 x 512
SSD300 (VGG16)(this repo) 80.0 77.5 - 8732 300 x 300
SSD321 (ResNet101)(this repo) 79.5 76.4 27.5 10325 321 x 321
SSD512 (VGG16)(this repo) 81.6 80.0 - 24564 512 x 512
SSD513 (ResNet101)(this repo) 83.0 81.3 16 25844 513 x 513

Dependencies

Library: OpenCV-Python, PyTorch>0.4.0, Ubuntu 14.04

Dataset

PascalVOC

# Download the data.
cd $HOME/data
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar
# Extract the data.
tar -xvf VOCtrainval_11-May-2012.tar
tar -xvf VOCtrainval_06-Nov-2007.tar
tar -xvf VOCtest_06-Nov-2007.tar

MSCOCO 2017 (download link)

  #step1: download the following data and annotation
  2017 Train images [118K/18GB]
  2017 Val images [5K/1GB]
  2017 Test images [41K/6GB]
  2017 Train/Val annotations [241MB]
  #step2: arrange the data to the following structure
  COCO
  ---train
  ---test
  ---val
  ---annotations

Train/Test/Evaluation

1. Change the mode in main.py
2. Change parameters such as root (data directory) in config/ssd_config.py
3. python main.py

About

High precision and fast speed for SSD

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages