This repository is the official implementation of Distributional Variational AutoEncoder: Application to Synthetic Data Generation (DistVAE) with pytorch.
NOTE: This repository supports WandB MLOps platform!
python main.py --dataset <dataset>
- Synthetic data generation and evaluation:
synthesize.py
- CDF estimation and Vrate:
inference.py
- Discretize estimated CDF example:
calibration.py
- Membership inference attack for VAE:
shadow_data.py
: generate training/test datasets for shadow modelsshadow_main.py
: training shadow models using training datasets fromshadow_data.py
shadow_attack.py
: evaluate membership inference attack for VAE
.
+-- assets (for each dataset)
+-- modules
| +-- adult_datasets.py
| +-- cabs_datasets.py
| +-- covtype_datasets.py
| +-- credit_datasets.py
| +-- kings_datasets.py
| +-- loan_datasets.py
| +-- evaluation.py
| +-- model.py
| +-- simulation.py
| +-- train.py
+-- main.py
+-- synthesize.py
+-- inference.py
+-- calibration.py
+-- shadow_data.py
+-- shadow_main.py
+-- shadow_attack.py
+-- LICENSE
+-- README.md
@inproceedings{
an2023distributional,
title={Distributional Learning of Variational AutoEncoder: Application to Synthetic Data Generation},
author={Seunghwan An and Jong-June Jeon},
booktitle={Thirty-seventh Conference on Neural Information Processing Systems},
year={2023},
url={https://openreview.net/forum?id=GxL6PrmEUw}
}