-
Notifications
You must be signed in to change notification settings - Fork 86
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge remote-tracking branch 'origin/matnet' into v0.3.0
- Loading branch information
Showing
5 changed files
with
461 additions
and
0 deletions.
There are no files selected for viewing
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,52 @@ | ||
from dataclasses import dataclass | ||
from typing import Tuple, Union | ||
|
||
import torch | ||
import torch.nn as nn | ||
from einops import rearrange | ||
from rl4co.models.zoo.common.autoregressive.decoder import AutoregressiveDecoder | ||
from rl4co.utils.ops import batchify, get_num_starts, select_start_nodes, unbatchify | ||
from tensordict import TensorDict | ||
from torch import Tensor | ||
|
||
|
||
@dataclass | ||
class PrecomputedCache: | ||
node_embeddings: Tensor | ||
graph_context: Union[Tensor, float] | ||
glimpse_key: Tensor | ||
glimpse_val: Tensor | ||
logit_key: Tensor | ||
|
||
|
||
class MatNetDecoder(AutoregressiveDecoder): | ||
def _precompute_cache( | ||
self, embeddings: Tuple[Tensor, Tensor], num_starts: int = 0, td: TensorDict = None | ||
): | ||
col_emb, row_emb = embeddings | ||
( | ||
glimpse_key_fixed, | ||
glimpse_val_fixed, | ||
logit_key, | ||
) = self.project_node_embeddings( | ||
col_emb | ||
).chunk(3, dim=-1) | ||
|
||
# Optionally disable the graph context from the initial embedding as done in POMO | ||
if self.use_graph_context: | ||
graph_context = unbatchify( | ||
batchify(self.project_fixed_context(col_emb.mean(1)), num_starts), | ||
num_starts, | ||
) | ||
else: | ||
graph_context = 0 | ||
|
||
# Organize in a dataclass for easy access | ||
return PrecomputedCache( | ||
node_embeddings=row_emb, | ||
graph_context=graph_context, | ||
glimpse_key=glimpse_key_fixed, | ||
glimpse_val=glimpse_val_fixed, | ||
# logit_key=col_emb, | ||
logit_key=logit_key, | ||
) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,309 @@ | ||
import math | ||
from typing import Optional | ||
|
||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
from einops import rearrange | ||
from rl4co.models.nn.ops import Normalization | ||
from tensordict import TensorDict | ||
|
||
|
||
class MatNetCrossMHA(nn.Module): | ||
def __init__( | ||
self, | ||
embedding_dim: int, | ||
num_heads: int, | ||
bias: bool = True, | ||
mixer_hidden_dim: int = 16, | ||
mix1_init: float = (1 / 2) ** (1 / 2), | ||
mix2_init: float = (1 / 16) ** (1 / 2), | ||
): | ||
super().__init__() | ||
self.embedding_dim = embedding_dim | ||
self.num_heads = num_heads | ||
assert ( | ||
self.embedding_dim % num_heads == 0 | ||
), "embedding_dim must be divisible by num_heads" | ||
self.head_dim = self.embedding_dim // num_heads | ||
|
||
self.Wq = nn.Linear(embedding_dim, embedding_dim, bias=bias) | ||
self.Wkv = nn.Linear(embedding_dim, 2 * embedding_dim, bias=bias) | ||
|
||
# Score mixer | ||
# Taken from the official MatNet implementation | ||
# https://github.com/yd-kwon/MatNet/blob/main/ATSP/ATSP_MatNet/ATSPModel_LIB.py#L72 | ||
mix_W1 = torch.torch.distributions.Uniform(low=-mix1_init, high=mix1_init).sample( | ||
(num_heads, 2, mixer_hidden_dim) | ||
) | ||
mix_b1 = torch.torch.distributions.Uniform(low=-mix1_init, high=mix1_init).sample( | ||
(num_heads, mixer_hidden_dim) | ||
) | ||
self.mix_W1 = nn.Parameter(mix_W1) | ||
self.mix_b1 = nn.Parameter(mix_b1) | ||
|
||
mix_W2 = torch.torch.distributions.Uniform(low=-mix2_init, high=mix2_init).sample( | ||
(num_heads, mixer_hidden_dim, 1) | ||
) | ||
mix_b2 = torch.torch.distributions.Uniform(low=-mix2_init, high=mix2_init).sample( | ||
(num_heads, 1) | ||
) | ||
self.mix_W2 = nn.Parameter(mix_W2) | ||
self.mix_b2 = nn.Parameter(mix_b2) | ||
|
||
self.out_proj = nn.Linear(embedding_dim, embedding_dim, bias=bias) | ||
|
||
def forward(self, q_input, kv_input, dmat): | ||
""" | ||
Args: | ||
q_input (Tensor): [b, m, d] | ||
kv_input (Tensor): [b, n, d] | ||
dmat (Tensor): [b, m, n] | ||
Returns: | ||
Tensor: [b, m, d] | ||
""" | ||
|
||
b, m, n = dmat.shape | ||
|
||
q = rearrange( | ||
self.Wq(q_input), "b m (h d) -> b h m d", h=self.num_heads | ||
) # [b, h, m, d] | ||
k, v = rearrange( | ||
self.Wkv(kv_input), "b n (two h d) -> two b h n d", two=2, h=self.num_heads | ||
).unbind( | ||
dim=0 | ||
) # [b, h, n, d] | ||
|
||
scale = math.sqrt(q.size(-1)) # scale factor | ||
attn_scores = torch.matmul(q, k.transpose(2, 3)) / scale # [b, h, m, n] | ||
mix_attn_scores = torch.stack( | ||
[attn_scores, dmat[:, None, :, :].expand(b, self.num_heads, m, n)], dim=-1 | ||
) # [b, h, m, n, 2] | ||
|
||
mix_attn_scores = ( | ||
( | ||
torch.matmul( | ||
F.relu( | ||
torch.matmul(mix_attn_scores.transpose(1, 2), self.mix_W1) | ||
+ self.mix_b1[None, None, :, None, :] | ||
), | ||
self.mix_W2, | ||
) | ||
+ self.mix_b2[None, None, :, None, :] | ||
) | ||
.transpose(1, 2) | ||
.squeeze(-1) | ||
) # [b, h, m, n] | ||
|
||
attn_probs = F.softmax(mix_attn_scores, dim=-1) | ||
out = torch.matmul(attn_probs, v) | ||
return self.out_proj(rearrange(out, "b h s d -> b s (h d)")) | ||
|
||
|
||
class MatNetMHA(nn.Module): | ||
def __init__(self, embedding_dim: int, num_heads: int, bias: bool = True): | ||
super().__init__() | ||
self.row_encoding_block = MatNetCrossMHA(embedding_dim, num_heads, bias) | ||
self.col_encoding_block = MatNetCrossMHA(embedding_dim, num_heads, bias) | ||
|
||
def forward(self, row_emb, col_emb, dmat): | ||
""" | ||
Args: | ||
row_emb (Tensor): [b, m, d] | ||
col_emb (Tensor): [b, n, d] | ||
dmat (Tensor): [b, m, n] | ||
Returns: | ||
Updated row_emb (Tensor): [b, m, d] | ||
Updated col_emb (Tensor): [b, n, d] | ||
""" | ||
|
||
updated_row_emb = self.row_encoding_block(row_emb, col_emb, dmat) | ||
updated_col_emb = self.col_encoding_block( | ||
col_emb, row_emb, dmat.transpose(-2, -1) | ||
) | ||
return updated_row_emb, updated_col_emb | ||
|
||
|
||
class MatNetMHALayer(nn.Module): | ||
def __init__( | ||
self, | ||
embedding_dim: int, | ||
num_heads: int, | ||
bias: bool = True, | ||
feed_forward_hidden: int = 512, | ||
normalization: Optional[str] = "instance", | ||
): | ||
super().__init__() | ||
self.MHA = MatNetMHA(embedding_dim, num_heads, bias) | ||
|
||
self.F_a = nn.ModuleDict( | ||
{ | ||
"norm1": Normalization(embedding_dim, normalization), | ||
"ffn": nn.Sequential( | ||
nn.Linear(embedding_dim, feed_forward_hidden), | ||
nn.ReLU(), | ||
nn.Linear(feed_forward_hidden, embedding_dim), | ||
), | ||
"norm2": Normalization(embedding_dim, normalization), | ||
} | ||
) | ||
|
||
self.F_b = nn.ModuleDict( | ||
{ | ||
"norm1": Normalization(embedding_dim, normalization), | ||
"ffn": nn.Sequential( | ||
nn.Linear(embedding_dim, feed_forward_hidden), | ||
nn.ReLU(), | ||
nn.Linear(feed_forward_hidden, embedding_dim), | ||
), | ||
"norm2": Normalization(embedding_dim, normalization), | ||
} | ||
) | ||
|
||
def forward(self, row_emb, col_emb, dmat): | ||
""" | ||
Args: | ||
row_emb (Tensor): [b, m, d] | ||
col_emb (Tensor): [b, n, d] | ||
dmat (Tensor): [b, m, n] | ||
Returns: | ||
Updated row_emb (Tensor): [b, m, d] | ||
Updated col_emb (Tensor): [b, n, d] | ||
""" | ||
|
||
row_emb_out, col_emb_out = self.MHA(row_emb, col_emb, dmat) | ||
|
||
row_emb_out = self.F_a["norm1"](row_emb + row_emb_out) | ||
row_emb_out = self.F_a["norm2"](row_emb_out + self.F_a["ffn"](row_emb_out)) | ||
|
||
col_emb_out = self.F_b["norm1"](col_emb + col_emb_out) | ||
col_emb_out = self.F_b["norm2"](col_emb_out + self.F_b["ffn"](col_emb_out)) | ||
return row_emb_out, col_emb_out | ||
|
||
|
||
class MatNetMHANetwork(nn.Module): | ||
def __init__( | ||
self, | ||
embedding_dim: int = 128, | ||
num_heads: int = 8, | ||
num_layers: int = 3, | ||
normalization: str = "batch", | ||
feed_forward_hidden: int = 512, | ||
): | ||
super().__init__() | ||
self.layers = nn.ModuleList( | ||
[ | ||
MatNetMHALayer( | ||
num_heads=num_heads, | ||
embedding_dim=embedding_dim, | ||
feed_forward_hidden=feed_forward_hidden, | ||
normalization=normalization, | ||
) | ||
for _ in range(num_layers) | ||
] | ||
) | ||
|
||
def forward(self, row_emb, col_emb, dmat): | ||
""" | ||
Args: | ||
row_emb (Tensor): [b, m, d] | ||
col_emb (Tensor): [b, n, d] | ||
dmat (Tensor): [b, m, n] | ||
Returns: | ||
Updated row_emb (Tensor): [b, m, d] | ||
Updated col_emb (Tensor): [b, n, d] | ||
""" | ||
|
||
for layer in self.layers: | ||
row_emb, col_emb = layer(row_emb, col_emb, dmat) | ||
return row_emb, col_emb | ||
|
||
|
||
class MatNetATSPInitEmbedding(nn.Module): | ||
""" | ||
Preparing the initial row and column embeddings for ATSP. | ||
Reference: | ||
https://github.com/yd-kwon/MatNet/blob/782698b60979effe2e7b61283cca155b7cdb727f/ATSP/ATSP_MatNet/ATSPModel.py#L51 | ||
""" | ||
|
||
def __init__(self, embedding_dim: int, mode: str = "RandomOneHot") -> None: | ||
super().__init__() | ||
|
||
self.embedding_dim = embedding_dim | ||
assert mode in { | ||
"RandomOneHot", | ||
"Random", | ||
}, "mode must be one of ['RandomOneHot', 'Random']" | ||
self.mode = mode | ||
|
||
self.dmat_proj = nn.Linear(1, 2 * embedding_dim, bias=False) | ||
self.row_proj = nn.Linear(embedding_dim * 4, embedding_dim, bias=False) | ||
self.col_proj = nn.Linear(embedding_dim * 4, embedding_dim, bias=False) | ||
|
||
def forward(self, td: TensorDict): | ||
dmat = td["cost_matrix"] # [b, n, n] | ||
b, n, _ = dmat.shape | ||
|
||
row_emb = torch.zeros(b, n, self.embedding_dim, device=dmat.device) | ||
|
||
if self.mode == "RandomOneHot": | ||
# MatNet uses one-hot encoding for column embeddings | ||
# https://github.com/yd-kwon/MatNet/blob/782698b60979effe2e7b61283cca155b7cdb727f/ATSP/ATSP_MatNet/ATSPModel.py#L60 | ||
|
||
col_emb = torch.zeros(b, n, self.embedding_dim, device=dmat.device) | ||
rand = torch.rand(b, n) | ||
rand_idx = rand.argsort(dim=1) | ||
b_idx = torch.arange(b)[:, None].expand(b, n) | ||
n_idx = torch.arange(n)[None, :].expand(b, n) | ||
col_emb[b_idx, n_idx, rand_idx] = 1.0 | ||
|
||
elif self.mode == "Random": | ||
col_emb = torch.rand(b, n, self.embedding_dim, device=dmat.device) | ||
else: | ||
raise NotImplementedError | ||
|
||
return row_emb, col_emb, dmat | ||
|
||
|
||
class MatNetEncoder(nn.Module): | ||
def __init__( | ||
self, | ||
embedding_dim: int = 256, | ||
num_heads: int = 16, | ||
num_layers: int = 5, | ||
normalization: str = "instance", | ||
feed_forward_hidden: int = 512, | ||
init_embedding: nn.Module = None, | ||
init_embedding_kwargs: dict = None, | ||
): | ||
super().__init__() | ||
|
||
if init_embedding is None: | ||
init_embedding = MatNetATSPInitEmbedding( | ||
embedding_dim, **init_embedding_kwargs | ||
) | ||
|
||
self.init_embedding = init_embedding | ||
self.net = MatNetMHANetwork( | ||
embedding_dim=embedding_dim, | ||
num_heads=num_heads, | ||
num_layers=num_layers, | ||
normalization=normalization, | ||
feed_forward_hidden=feed_forward_hidden, | ||
) | ||
|
||
def forward(self, td): | ||
row_emb, col_emb, dmat = self.init_embedding(td) | ||
row_emb, col_emb = self.net(row_emb, col_emb, dmat) | ||
|
||
embedding = (row_emb, col_emb) | ||
init_embedding = None | ||
return embedding, init_embedding # match output signature for the AR policy class |
Oops, something went wrong.