Abstract is a minimal, agent-first Python framework built to orchestrate intelligent agent systems —
powering Aegix and next-generation AI-native platforms.
Abstract provides a clean, modular foundation to define agents, organize teams, run workflows, and scale dynamic execution.
Built for clarity. Designed for scalability.
Think in Higher Dimension
- ✅
Agentclass — LLM-driven agents with tools, goals, memory, and roles - ✅
OrgTree— Declarative + object-based team hierarchy builder - ✅
Workflowsystem — Sequential and parallel task execution - ✅
LLMCallandToolCall— Unified task units for orchestration - ✅ Plug-and-play design for future RAG, memory, and multi-agent scaling
git clone https://github.com/Aegix-AI/Abstract.git
cd Abstract
pip install -e .from abstract.core.agent import Agent
from abstract.core.orgtree import OrgTree
from abstract.core.workflow import Workflow, Sequential, Parallel, LLMCall, ToolCall
# 1. Define agents
researcher = Agent("ResearcherX", llm="gpt-4o", tools=["web_search"], goal="Find articles")
writer = Agent("WriterY", llm="deepseek", tools=["notion_writer"], goal="Write blog")
# 2. Build team
structure = {"ResearcherX": {"WriterY": {}}}
team = OrgTree(name="ContentPod", manager="ResearcherX", structure=structure, agents=[researcher, writer])
# 3. Create workflow
class ContentCreationWorkflow(Workflow):
def __init__(self):
pipeline = Sequential([
LLMCall("plan_content", agent="ResearcherX"),
ToolCall("web_search", agent="ResearcherX"),
LLMCall("write_blog", agent="WriterY"),
])
super().__init__(pipeline)
workflow = ContentCreationWorkflow()
# 4. Run workflow
context = {"topic": "AI Safety"}
result = workflow.run(context)
print(result)abstract/
├── __init__.py
├── core/
│ ├── agent.py # Agent class
│ ├── orgtree.py # Team and hierarchy system
│ ├── workflow.py # Workflows, Sequential, Parallel, Calls
│ ├── memory.py # (Coming soon) Memory module
│ ├── api.py # (Coming soon) API caller
├── icon/
│ └── Abstract_icon.png # Branding assets
├── setup.py # Packaging
└── README.md # You're reading this
-
v0.3.0: Memory system (agent memory, scoped memory pools)
-
v0.4.0: Unified LLM + Tool API layer (real execution)
-
v0.5.0: Retrieval-Augmented Generation (RAG) modules
-
v0.6.0: Meta-agent and dynamic agent orchestration