- Spconv
conda install -f lisa-spconv.yaml
conda activate lisa-spconv
cd LiSA-spconv/third_party
python setup.py install
- MinkowskiEngine
conda install -f lisa-mink.yaml
We support the Oxford Radar RobotCar and NCLT datasets right now.
We also use PQEE to enhance the Oxford and provide the corrected pose, QEOxford.
The data of the Oxford, QEOxford and NCLT dataset should be organized as follows:
- (QE)Oxford
data_root
├── 2019-01-11-14-02-26-radar-oxford-10k
│ ├── velodyne_left
│ │ ├── xxx.bin
│ │ ├── xxx.bin
│ │ ├── …
│ ├── sphere_velodyne_left_feature32
│ │ ├── xxx.bin
│ │ ├── xxx.bin
│ │ ├── …
│ ├── velodyne_left_calibrateFalse.h5
│ ├── velodyne_left_False.h5
│ ├── rot_tr.bin
│ ├── tr.bin
│ ├── tr_add_mean.bin
├── …
├── (QE)Oxford_pose_stats.txt
├── train_split.txt
├── valid_split.txt
- NCLT
data_root
├── 2012-01-22
│ ├── velodyne_left
│ │ ├── xxx.bin
│ │ ├── xxx.bin
│ │ ├── …
│ ├── sphere_velodyne_left_feature32
│ │ ├── xxx.bin
│ │ ├── xxx.bin
│ │ ├── …
│ ├── velodyne_left_False.h5
├── …
├── NCLT_pose_stats.txt
├── train_split.txt
├── valid_split.txt
The files used are provided in the dataset directory.
We use SphereFormer for data preprocessing (just used for training) and generate corresponding semantic feature. You need to download the code, put dataset.py into util and put get_seg_fearure.py into /.
CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --nproc_per_node=2 --master_addr 127.0.0.34 --master_port 29503 train_ddp.py
python test.py
The models of LiSA on Oxford, QEOxford, and NCLT can be downloaded here.
We appreciate the code of SGLoc, SphereFormer and DiffKD they shared.
If you find this codebase useful for your research, please use the following entry.
@inproceedings{yang2024lisa,
title={LiSA: LiDAR Localization with Semantic Awareness},
author={Yang, Bochun and Li, Zijun and Li, Wen and Cai, Zhipeng and Wen, Chenglu and Zang, Yu and Muller, Matthias and Wang, Cheng},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={15271--15280},
year={2024}
}