Skip to content

Yangzhouzhou/Large-Scale-MLS-Dataset-Semantic-Segmentation

Repository files navigation

Code for HongKong-3D datasets Semantic Segmentation


            


points with color                             labeled points

Requirements

The code is tested on the following environment

  • Python 3.9
  • Pytorch 1.12.1
  • laspy 2.2.2
  • open3d 0.15.0
  • matplotlib 3.5.1
  • numpy 1.24.2
  • pathlib 1.0.1
  • CUDA 11.3
  • cudnn 8.2.1

Dataset

  • Original dataset: HongKong-3D(.las/.laz format)
  • Processed dataset: HongKong-3D(.ply format)

Usage

Data Preprocessing

  • Using /utils/data_prepare_hongkong.py to preprocess the original dataset.
  • Using /utils/generate_augmented_pc.py to generate augmented point clouds.

Training

  • Using /main_HongKong.py to train the model. You can try like following (more detail in the code):

python main_HongKong.py --name NAME --log_dir LOG_DIR --max_epoch EPOCH --gpu GPU_ID --vla_split VAL_SPLIT

Testing

  • Using /test_HongKong.py to test the model. You can try like following (more detail in the code):

python test_HongKong.py --checkpoint_path CHECKPOINT_PATH --name NAME --log_dir LOG_DIR

Pretrained Model

Trained models are provided for use, for details see Pretrained Model

config

  • Using /helper_tool.py to set the parameters(including bath_size. etc).

Results




Reference

Concact Us

Please contact us if you have any questions during use or if you have any other needs.

About

Large-Scale MLS Point Cloud Dataset Semantic Segmentation.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published