Develop a modular application uses spark-submit to provide results for given tasks.
- Analytics 1: Find the number of crashes (accidents) in which number of persons killed are male?
- Analysis 2: How many two wheelers are booked for crashes?
- Analysis 3: Which state has highest number of accidents in which females are involved?
- Analysis 4: Which are the Top 5th to 15th VEH_MAKE_IDs that contribute to a largest number of injuries including death.
- Analysis 5: For all the body styles involved in crashes, mention the top ethnic user group of each unique body style.
- Analysis 6: Among the crashed cars, what are the Top 5 Zip Codes with highest number crashes with alcohols as the contributing factor to a crash (Use Driver Zip Code).
- Analysis 7: Count of Distinct Crash IDs where No Damaged Property was observed and Damage Level (VEH_DMAG_SCL~) is above 4 and car avails Insurance.
- Analysis 8: Determine the Top 5 Vehicle Makes where drivers are charged with speeding related offences, has licensed Drivers, used top 10 used vehicle colours and has car licensed with the Top 25 states with highest number of offences (to be deduced from the data).
- resource(Data resource)-> source_path(Input directory location to read all the CSVs from).
- resource(Data resource)-> destination_path(Output directory location to write individual CSV to).
- variables(ENV Variables)-> APPDIR(Project Parent directory PATH)
- functions(Dependent Variables) -> question_id(Analysis Question Identifier are associated with analysis question number mentioned above (i.e question_id:1 here 1 represents analysis 1 which is to find the number of crashes (accidents) in which number of persons killed are male)).
- functions(Dependent Variables) -> mode(Defines the spark write mode of the application. (i.e. overwrite, append, Ignore, ErrorIfExists))
- version(version of the config file)
- app_name(Defines the spark application name) can be anything related to the project.
- Pyspark - Data Processing Framework
- Seaborn - Data Visualization Library
- Matplotlib - Data Visualization Library
- Pandas - Data Analysis Library
- Jupyter Notebook - Data Analysis Tool
The basic project structure is shown as below:
CarCrashAnalysis-BCG
├─ .gitignore
├─ README.md
├─ config
│ └─ config.json
├─ jobs
│ ├─ __init__.py
│ ├─ job.py
│ ├─ jobbuilder.py
│ ├─ loader.py
│ ├─ logger.py
│ ├─ settings.py
│ └─ utils.py
├─ notebooks
│ └─ workbook.ipynb
├─ requirements.txt
├─ resources
│ ├─ logs
│ ├─ processed
│ │ ├─ Question_1
│ │ │ ├─ ._SUCCESS.crc
│ │ │ ├─ .part-00000-cfae5228-be9e-456b-82a7-1a8be3e75b47-c000.csv.crc
│ │ │ ├─ _SUCCESS
│ │ │ └─ part-00000-cfae5228-be9e-456b-82a7-1a8be3e75b47-c000.csv
│ │ ├─ Question_2
│ │ │ ├─ ._SUCCESS.crc
│ │ │ ├─ .part-00000-f02dac60-a57f-4384-a945-87965281456b-c000.csv.crc
│ │ │ ├─ _SUCCESS
│ │ │ └─ part-00000-f02dac60-a57f-4384-a945-87965281456b-c000.csv
│ │ ├─ Question_3
│ │ │ ├─ ._SUCCESS.crc
│ │ │ ├─ .part-00000-cad9913b-e1eb-4006-b8b2-dce7572f4a7e-c000.csv.crc
│ │ │ ├─ _SUCCESS
│ │ │ └─ part-00000-cad9913b-e1eb-4006-b8b2-dce7572f4a7e-c000.csv
│ │ ├─ Question_4
│ │ │ ├─ ._SUCCESS.crc
│ │ │ ├─ .part-00000-fef5dd18-6b02-4ad9-9818-1b56d4cb72e2-c000.csv.crc
│ │ │ ├─ _SUCCESS
│ │ │ └─ part-00000-fef5dd18-6b02-4ad9-9818-1b56d4cb72e2-c000.csv
│ │ ├─ Question_5
│ │ │ ├─ ._SUCCESS.crc
│ │ │ ├─ .part-00000-bb2305a2-89b6-4244-a48c-078be6506df1-c000.csv.crc
│ │ │ ├─ _SUCCESS
│ │ │ └─ part-00000-bb2305a2-89b6-4244-a48c-078be6506df1-c000.csv
│ │ ├─ Question_6
│ │ │ ├─ ._SUCCESS.crc
│ │ │ ├─ .part-00000-7c3fae01-564b-4929-a972-ea92a2aca3ef-c000.csv.crc
│ │ │ ├─ _SUCCESS
│ │ │ └─ part-00000-7c3fae01-564b-4929-a972-ea92a2aca3ef-c000.csv
│ │ ├─ Question_7
│ │ │ ├─ ._SUCCESS.crc
│ │ │ ├─ .part-00000-9292f6e7-c9fc-4314-9521-16cf969ee0da-c000.csv.crc
│ │ │ ├─ _SUCCESS
│ │ │ └─ part-00000-9292f6e7-c9fc-4314-9521-16cf969ee0da-c000.csv
│ │ └─ Question_8
│ │ ├─ ._SUCCESS.crc
│ │ ├─ .part-00000-c7f26cb6-920e-478e-a2de-a5cded5eef32-c000.csv.crc
│ │ ├─ _SUCCESS
│ │ └─ part-00000-c7f26cb6-920e-478e-a2de-a5cded5eef32-c000.csv
│ └─ raw
│ ├─ Charges_use.csv
│ ├─ Damages_use.csv
│ ├─ Endorse_use.csv
│ ├─ Primary_Person_use.csv
│ ├─ Restrict_use.csv
│ └─ Units_use.csv
├─ runner.py
└─ tests
└─ __init__.py
These instructions will get you a copy of the project up and running on your local machine for development and testing purposes.
What things you need to run the project?
Download and Install SPARK. Find the latest release from: Spark Download
Configure SPARK_HOME Environment Variable.
$SPARK_HOME = {Loaction of spark-3.3.1-bin-hadoop3 Directory}
Check Spark is installed properly or not by running.
spark-shell
Clone the Github Repo with the URL.
git clone https://github.com/Vivek-Murali/CarCrashAnalysis-BCG
Change the values in the config.json file which is found in config directory and the key defination are as follows.
config.json, The config file looks like below:
{
"resource":{
"source_path":"resources/raw",
"destination_path":"resources/processed"
},
"variables":{
"APPDIR":"/home/sharpnel/Documents/CarCrashAnalysis-BCG"
},
"functions":{
"question_id":8,
"mode": "overwrite"
},
"version":"v1.2.0",
"app_name":"analytics"
}
Run the application by using the following command.
spark-submit --master local[*] runner.py --config config/config.json
Note: runner.py is the main runner file invokes the jobbuilder class to build and execute analysis based on question_id mentioned in config.json file.
You can find the rough version of the analysis in the workbook.ipynb file in the notebook directory.