Skip to content

Commit

Permalink
Merge branch 'master' into logic
Browse files Browse the repository at this point in the history
  • Loading branch information
fredrik-bakke authored Dec 4, 2024
2 parents 3d6cd60 + 3ae1f7c commit 3565e51
Show file tree
Hide file tree
Showing 126 changed files with 14,710 additions and 1,687 deletions.
11 changes: 11 additions & 0 deletions references.bib
Original file line number Diff line number Diff line change
Expand Up @@ -44,6 +44,17 @@ @article{AL19
langid = {english}
}

@misc{Awodey22,
author = {{Awodey}, Steve},
title = "{On Hofmann-Streicher universes}",
keywords = {Mathematics - Category Theory, Mathematics - Logic},
year = 2022,
month = may,
archivePrefix = {arXiv},
eprint = {2205.10917},
primaryClass = {math.CT}
}

@online{BCDE21,
title = {Free groups in HoTT/UF in Agda},
author = {Bezem, Marc and Coquand, Thierry and Dybjer, Peter and Escardó, Martín},
Expand Down
14 changes: 14 additions & 0 deletions src/foundation-core/equality-dependent-pair-types.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -154,6 +154,20 @@ tr-eq-pair-Σ :
tr-eq-pair-Σ C refl refl u = refl
```

### The action of `pr1` on identifcations of the form `eq-pair-Σ`

```agda
module _
{l1 l2 : Level} {A : UU l1} {B : A UU l2}
where

ap-pr1-eq-pair-Σ :
{x x' : A} {y : B x} {y' : B x'}
(p : x = x') (q : dependent-identification B p y y')
ap pr1 (eq-pair-Σ p q) = p
ap-pr1-eq-pair-Σ refl refl = refl
```

## See also

- Equality proofs in cartesian product types are characterized in
Expand Down
4 changes: 4 additions & 0 deletions src/foundation.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,7 @@ open import foundation.action-on-equivalences-type-families public
open import foundation.action-on-equivalences-type-families-over-subuniverses public
open import foundation.action-on-higher-identifications-functions public
open import foundation.action-on-homotopies-functions public
open import foundation.action-on-identifications-binary-dependent-functions public
open import foundation.action-on-identifications-binary-functions public
open import foundation.action-on-identifications-dependent-functions public
open import foundation.action-on-identifications-functions public
Expand All @@ -31,6 +32,7 @@ open import foundation.axiom-of-choice public
open import foundation.bands public
open import foundation.base-changes-span-diagrams public
open import foundation.bicomposition-functions public
open import foundation.binary-dependent-identifications public
open import foundation.binary-embeddings public
open import foundation.binary-equivalences public
open import foundation.binary-equivalences-unordered-pairs-of-types public
Expand Down Expand Up @@ -208,6 +210,8 @@ open import foundation.functoriality-truncation public
open import foundation.fundamental-theorem-of-identity-types public
open import foundation.global-choice public
open import foundation.global-subuniverses public
open import foundation.globular-type-of-dependent-functions public
open import foundation.globular-type-of-functions public
open import foundation.higher-homotopies-morphisms-arrows public
open import foundation.hilberts-epsilon-operators public
open import foundation.homotopies public
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,53 @@
# The binary action on identifications of binary dependent functions

```agda
module foundation.action-on-identifications-binary-dependent-functions where
```

<details><summary>Imports</summary>

```agda
open import foundation.action-on-identifications-dependent-functions
open import foundation.binary-dependent-identifications
open import foundation.universe-levels

open import foundation-core.identity-types
```

</details>

## Idea

Given a binary dependent function `f : (x : A) (y : B) C x y` and
[identifications](foundation-core.identity-types.md) `p : x = x'` in `A` and
`q : y = y'` in `B`, we obtain a
[binary dependent identification](foundation.binary-dependent-identifications.md)

```text
apd-binary f p q : binary-dependent-identification p q (f x y) (f x' y')
```

we call this the
{{#concept "binary action on identifications of dependent binary functions" Agda=apd-binary}}.

## Definitions

### The binary action on identifications of binary dependent functions

```agda
module _
{l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {C : A B UU l3}
(f : (x : A) (y : B) C x y)
where

apd-binary :
{x x' : A} (p : x = x') {y y' : B} (q : y = y')
binary-dependent-identification C p q (f x y) (f x' y')
apd-binary refl refl = refl
```

## See also

- [Action of functions on identifications](foundation.action-on-identifications-functions.md)
- [Action of functions on higher identifications](foundation.action-on-higher-identifications-functions.md).
- [Action of dependent functions on identifications](foundation.action-on-identifications-dependent-functions.md).
Original file line number Diff line number Diff line change
Expand Up @@ -198,6 +198,7 @@ module _

## See also

- [Action of binary dependent functions on identifications](foundation.action-on-identifications-binary-dependent-functions.md)
- [Action of functions on identifications](foundation.action-on-identifications-functions.md)
- [Action of functions on higher identifications](foundation.action-on-higher-identifications-functions.md).
- [Action of dependent functions on identifications](foundation.action-on-identifications-dependent-functions.md).
43 changes: 43 additions & 0 deletions src/foundation/binary-dependent-identifications.lagda.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,43 @@
# Binary dependent identifications

```agda
module foundation.binary-dependent-identifications where
```

<details><summary>Imports</summary>

```agda
open import foundation.binary-transport
open import foundation.identity-types
open import foundation.universe-levels
```

</details>

## Idea

Consider a family of types `C x y` indexed by `x : A` and `y : B`, and consider
[identifications](foundation-core.identity-types.md) `p : x = x'` and
`q : y = y'` in `A` and `B`, respectively. A
{{#concept "binary dependent identification" Agda=binary-dependent-identification}}
from `c : C x y` to `c' : C x' y'` over `p` and `q` is a
[dependent identification](foundation.dependent-identifications.md)

```text
r : dependent-identification (C x') p (tr (λ t C t y) p c) c'.
```

## Definitions

### Binary dependent identifications

```agda
module _
{l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (C : A B UU l3)
where

binary-dependent-identification :
{x x' : A} (p : x = x') {y y' : B} (q : y = y')
C x y C x' y' UU l3
binary-dependent-identification p q c c' = binary-tr C p q c = c'
```
3 changes: 3 additions & 0 deletions src/foundation/binary-relations.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -154,6 +154,9 @@ module _

is-transitive : UU (l1 ⊔ l2)
is-transitive = (x y z : A) R y z R x y R x z

is-transitive' : UU (l1 ⊔ l2)
is-transitive' = {x y z : A} R y z R x y R x z
```

### The predicate of being a transitive relation valued in propositions
Expand Down
2 changes: 1 addition & 1 deletion src/foundation/binary-transport.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -37,7 +37,7 @@ module _
where

binary-tr : (p : x = x') (q : y = y') C x y C x' y'
binary-tr refl refl = id
binary-tr p q c = tr (C _) q (tr (λ u C u _) p c)

is-equiv-binary-tr : (p : x = x') (q : y = y') is-equiv (binary-tr p q)
is-equiv-binary-tr refl refl = is-equiv-id
Expand Down
4 changes: 4 additions & 0 deletions src/foundation/dependent-function-types.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -79,3 +79,7 @@ module _
( span-type-family-Π B)
( universal-property-dependent-function-types-Π B)
```

## See also

- [The globular type of dependent functions](foundation.globular-type-of-dependent-functions.md)
4 changes: 4 additions & 0 deletions src/foundation/dependent-identifications.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -298,3 +298,7 @@ module _
( inv-dependent-identification B p p'))
distributive-inv-concat-dependent-identification refl refl refl refl = refl
```

## See also

- [Binary dependent identifications](foundation.binary-dependent-identifications.md)
109 changes: 109 additions & 0 deletions src/foundation/globular-type-of-dependent-functions.lagda.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,109 @@
# The globular type of dependent functions

```agda
{-# OPTIONS --guardedness #-}

module foundation.globular-type-of-dependent-functions where
```

<details><summary>Imports</summary>

```agda
open import foundation.universe-levels

open import foundation-core.homotopies

open import globular-types.globular-types
open import globular-types.reflexive-globular-types
open import globular-types.transitive-globular-types
```

</details>

## Idea

The
{{#concept "globular type of dependent functions" Agda=dependent-function-type-Globular-Type}}
is the [globular type](globular-types.globular-types.md) consisting of
[dependent functions](foundation.dependent-function-types.md) and
[homotopies](foundation-core.homotopies.md) between them. Since homotopies are
themselves defined to be certain dependent functions, they directly provide a
globular structure on dependent function types.

The globular type of dependent functions of a type family `B` over `A` is
[reflexive](globular-types.reflexive-globular-types.md) and
[transitive](globular-types.transitive-globular-types.md), so it is a
[noncoherent wild higher precategory](wild-category-theory.noncoherent-wild-higher-precategories.md).

The structures defined in this file are used to define the
[noncoherent large wild higher precategory of types](foundation.wild-category-of-types.md).

## Definitions

### The globular type of dependent functions

```agda
dependent-function-type-Globular-Type :
{l1 l2 : Level} (A : UU l1) (B : A UU l2)
Globular-Type (l1 ⊔ l2) (l1 ⊔ l2)
0-cell-Globular-Type (dependent-function-type-Globular-Type A B) =
(x : A) B x
1-cell-globular-type-Globular-Type
( dependent-function-type-Globular-Type A B) f g =
dependent-function-type-Globular-Type A (eq-value f g)
```

## Properties

### The globular type of dependent functions is reflexive

```agda
is-reflexive-dependent-function-type-Globular-Type :
{l1 l2 : Level} {A : UU l1} {B : A UU l2}
is-reflexive-Globular-Type (dependent-function-type-Globular-Type A B)
is-reflexive-1-cell-is-reflexive-Globular-Type
is-reflexive-dependent-function-type-Globular-Type f =
refl-htpy
is-reflexive-1-cell-globular-type-is-reflexive-Globular-Type
is-reflexive-dependent-function-type-Globular-Type =
is-reflexive-dependent-function-type-Globular-Type

dependent-function-type-Reflexive-Globular-Type :
{l1 l2 : Level} (A : UU l1) (B : A UU l2)
Reflexive-Globular-Type (l1 ⊔ l2) (l1 ⊔ l2)
globular-type-Reflexive-Globular-Type
( dependent-function-type-Reflexive-Globular-Type A B) =
dependent-function-type-Globular-Type A B
refl-Reflexive-Globular-Type
( dependent-function-type-Reflexive-Globular-Type A B) =
is-reflexive-dependent-function-type-Globular-Type
```

### The globular type of dependent functions is transitive

```agda
is-transitive-dependent-function-type-Globular-Type :
{l1 l2 : Level} {A : UU l1} {B : A UU l2}
is-transitive-Globular-Type (dependent-function-type-Globular-Type A B)
comp-1-cell-is-transitive-Globular-Type
is-transitive-dependent-function-type-Globular-Type K H =
H ∙h K
is-transitive-1-cell-globular-type-is-transitive-Globular-Type
is-transitive-dependent-function-type-Globular-Type =
is-transitive-dependent-function-type-Globular-Type

dependent-function-type-Transitive-Globular-Type :
{l1 l2 : Level} (A : UU l1) (B : A UU l2)
Transitive-Globular-Type (l1 ⊔ l2) (l1 ⊔ l2)
globular-type-Transitive-Globular-Type
( dependent-function-type-Transitive-Globular-Type A B) =
dependent-function-type-Globular-Type A B
is-transitive-Transitive-Globular-Type
( dependent-function-type-Transitive-Globular-Type A B) =
is-transitive-dependent-function-type-Globular-Type
```

## See also

- [The globular type of functions](foundation.globular-type-of-functions.md)
- [The wild category of types](foundation.wild-category-of-types.md)
Loading

0 comments on commit 3565e51

Please sign in to comment.