Skip to content

Commit

Permalink
Some improvements (#20)
Browse files Browse the repository at this point in the history
* Use `ccdf`

* Improve DARBOOT

* Add reference

* Bump version

* Fix format?
  • Loading branch information
devmotion authored Sep 22, 2021
1 parent 90f502d commit 0b7acf7
Show file tree
Hide file tree
Showing 2 changed files with 52 additions and 31 deletions.
2 changes: 1 addition & 1 deletion Project.toml
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
name = "MCMCDiagnosticTools"
uuid = "be115224-59cd-429b-ad48-344e309966f0"
authors = ["David Widmann"]
version = "0.1.0"
version = "0.1.1"

[deps]
AbstractFFTs = "621f4979-c628-5d54-868e-fcf4e3e8185c"
Expand Down
81 changes: 51 additions & 30 deletions src/discretediag.jl
Original file line number Diff line number Diff line change
Expand Up @@ -71,7 +71,7 @@ function weiss(X::AbstractMatrix)
stat = (n / ca) * sum(chi_stat)
pval = NaN
if ((m_tot - 1) * (d - 1)) >= 1
pval = 1 - Distributions.cdf(Distributions.Chisq((m_tot - 1) * (d - 1)), stat)
pval = Distributions.ccdf(Distributions.Chisq((m_tot - 1) * (d - 1)), stat)
end

return (stat, m_tot, pval, ca)
Expand Down Expand Up @@ -183,24 +183,44 @@ function bd_inner(Y::AbstractMatrix, m::Int)
return billingsley_sub(f)
end

function simulate_NDARMA(
N::Int, p::Int, q::Int, prob::Vector{Float64}, phi::Vector{Float64}
)
sampler1 = Distributions.sampler(Distributions.Multinomial(1, phi))
sampler2 = Distributions.sampler(Distributions.Categorical(prob))

alphabeta = Vector{Int}(undef, length(phi))
alphabeta_p = @view(alphabeta[1:p])
alphabeta_q = @view(alphabeta[(end - q):end])
eps = Vector{Int}(undef, q + 1)
X = Vector{Int}(undef, N)
Random.rand!(sampler2, @view(X[1:p]))
for t in (p + 1):N
Random.rand!(sampler1, alphabeta)
Random.rand!(sampler2, eps)
X[t] =
LinearAlgebra.dot(alphabeta_p, @view(X[(t - p):(t - 1)])) +
LinearAlgebra.dot(alphabeta_q, eps)
@doc raw"""
simulate_DAR1!(X::Matrix{Int}, phi::Float64, sampler)
Simulate a DAR(1) model independently in each column of `X`.
The DAR(1) model ``(X_t)_{t \geq 0}`` is defined by
```math
X_t = \alpha_t X_{t-1} + (1 - \alpha_t) \epsilon_{t-1},
```
where
```math
\begin{aligned}
X_1 \sim \text{sampler}, \\
\alpha_t \sim \operatorname{Bernoulli}(\phi), \\
\epsilon_{t-1} \sim \text{sampler},
\end{aligned}
```
are independent random variables.
"""
function simulate_DAR1!(X::Matrix{Int}, phi::Float64, sampler)
n = size(X, 1)
n > 0 || error("output matrix must be non-empty")

# for all simulations
@inbounds for j in axes(X, 2)
# sample first value from categorical distribution with probabilities `prob`
X[1, j] = rand(sampler)

for t in 2:n
# compute next value
X[t, j] = if rand() <= phi
# copy previous value with probability `phi`
X[t - 1, j]
else
# sample value with probability `1-phi`
rand(sampler)
end
end
end

return X
Expand Down Expand Up @@ -282,27 +302,24 @@ function diag_all(
stat = t * sum(chi_stat)
df0 = (m - 1) * (d - 1)
if m > 1 && !isnan(stat)
pval =
1 - Distributions.cdf(Distributions.Chisq((m - 1) * (d - 1)), stat)
pval = Distributions.ccdf(Distributions.Chisq(df0), stat)
end
elseif method == :weiss
stat = (t / ca) * sum(chi_stat)
df0 = (m - 1) * (d - 1)
pval = NaN
if m > 1 && !isnan(stat)
pval =
1 - Distributions.cdf(Distributions.Chisq((m - 1) * (d - 1)), stat)
pval = Distributions.ccdf(Distributions.Chisq(df0), stat)
end
elseif method == :DARBOOT
stat = t * sum(chi_stat)
bstats = zeros(Float64, nsim)
sampler_phat = Distributions.sampler(Distributions.Categorical(phat))
bstats = zeros(nsim)
Y = Matrix{Int}(undef, t, d)
for b in 1:nsim
Y = reduce(
hcat,
[simulate_NDARMA(t, 1, 0, phat, [phia, 1 - phia]) for j in 1:d],
)
simulate_DAR1!(Y, phia, sampler_phat)
s = hangartner_inner(Y, m)[1]
bstats[b] = s
@inbounds bstats[b] = s
end
non_nan_bstats = filter(!isnan, bstats)
df0 = Statistics.mean(non_nan_bstats)
Expand All @@ -321,7 +338,7 @@ function diag_all(
stat = hot_stat
df0 = df
if df > 0 && !isnan(hot_stat)
pval = 1 - Distributions.cdf(Distributions.Chisq(df), hot_stat)
pval = Distributions.ccdf(Distributions.Chisq(df), hot_stat)
end
elseif method == :billingsleyBOOT
stat = hot_stat
Expand Down Expand Up @@ -410,6 +427,10 @@ end
Compute discrete diagnostic where `method` can be one of `:weiss`, `:hangartner`,
`:DARBOOT`, `:MCBOOT`, `:billinsgley`, and `:billingsleyBOOT`.
# References
Benjamin E. Deonovic, & Brian J. Smith. (2017). Convergence diagnostics for MCMC draws of a categorical variable.
"""
function discretediag(
chains::AbstractArray{<:Real,3}; frac::Real=0.3, method::Symbol=:weiss, nsim::Int=1000
Expand Down

2 comments on commit 0b7acf7

@devmotion
Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@JuliaRegistrator
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Registration pull request created: JuliaRegistries/General/45365

After the above pull request is merged, it is recommended that a tag is created on this repository for the registered package version.

This will be done automatically if the Julia TagBot GitHub Action is installed, or can be done manually through the github interface, or via:

git tag -a v0.1.1 -m "<description of version>" 0b7acf779c1f38712675106aa24c4b29a270fb42
git push origin v0.1.1

Please sign in to comment.