Skip to content

Commit

Permalink
Remove ADBackend and ADBijector (#242)
Browse files Browse the repository at this point in the history
* remove AD backend related stuff

* removed usages of ADBijector

* removed inclusion of deleted file adbijector

* removed further references to ADBijector

* fix for ordered

* removed Identity which should been removed before

* make bijector for TransformedDistribution slightly nicer

* bumped minor version
  • Loading branch information
torfjelde authored Feb 3, 2023
1 parent aa99fed commit 622865b
Show file tree
Hide file tree
Showing 16 changed files with 31 additions and 213 deletions.
3 changes: 1 addition & 2 deletions Project.toml
Original file line number Diff line number Diff line change
@@ -1,7 +1,6 @@
name = "Bijectors"
uuid = "76274a88-744f-5084-9051-94815aaf08c4"
version = "0.11.1"

version = "0.12.0"

[deps]
ArgCheck = "dce04be8-c92d-5529-be00-80e4d2c0e197"
Expand Down
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -33,7 +33,7 @@ The following table lists mathematical operations for a bijector and the corresp

In this table, `b` denotes a `Bijector`, `J(b, x)` denotes the Jacobian of `b` evaluated at `x`, `b_*` denotes the [push-forward](https://www.wikiwand.com/en/Pushforward_measure) of `p` by `b`, and `x ∼ p` denotes `x` sampled from the distribution with density `p`.

The "Automatic" column in the table refers to whether or not you are required to implement the feature for a custom `Bijector`. "AD" refers to the fact that it can be implemented "automatically" using automatic differentiation, i.e. `ADBijector`.
The "Automatic" column in the table refers to whether or not you are required to implement the feature for a custom `Bijector`. "AD" refers to the fact that this can be implemented "automatically" using automatic differentiation, e.g. ForwardDiff.jl.

## Functions

Expand Down
2 changes: 0 additions & 2 deletions src/Bijectors.jl
Original file line number Diff line number Diff line change
Expand Up @@ -64,11 +64,9 @@ export TransformDistribution,
logabsdetjac!,
logabsdetjacinv,
Bijector,
ADBijector,
Inverse,
Stacked,
stack,
Identity,
bijector,
transformed,
UnivariateTransformed,
Expand Down
29 changes: 0 additions & 29 deletions src/bijectors/adbijector.jl

This file was deleted.

4 changes: 2 additions & 2 deletions src/bijectors/ordered.jl
Original file line number Diff line number Diff line change
Expand Up @@ -17,10 +17,10 @@ Return a `Distribution` whose support are ordered vectors, i.e., vectors with in
This transformation is currently only supported for otherwise unconstrained distributions.
"""
function ordered(d::ContinuousMultivariateDistribution)
if !isa(bijector(d), Identity)
if bijector(d) !== identity
throw(ArgumentError("ordered transform is currently only supported for unconstrained distributions."))
end
return Bijectors.transformed(d, OrderedBijector())
return transformed(d, OrderedBijector())
end

with_logabsdet_jacobian(b::OrderedBijector, x) = transform(b, x), logabsdetjac(b, x)
Expand Down
2 changes: 1 addition & 1 deletion src/bijectors/stacked.jl
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@ where `bs[i]::Bijector` is applied to `x[ranges[i]]::UnitRange{Int}`.
# Examples
```
b1 = Logit(0.0, 1.0)
b2 = Identity()
b2 = identity
b = stack(b1, b2)
b([0.0, 1.0]) == [b1(0.0), 1.0] # => true
```
Expand Down
20 changes: 10 additions & 10 deletions src/compat/distributionsad.jl
Original file line number Diff line number Diff line change
Expand Up @@ -9,22 +9,22 @@ using Distributions: AbstractMvLogNormal
bijector(::TuringDirichlet) = SimplexBijector()
bijector(::TuringWishart) = PDBijector()
bijector(::TuringInverseWishart) = PDBijector()
bijector(::TuringScalMvNormal) = Identity()
bijector(::TuringDiagMvNormal) = Identity()
bijector(::TuringDenseMvNormal) = Identity()
bijector(::TuringScalMvNormal) = identity
bijector(::TuringDiagMvNormal) = identity
bijector(::TuringDenseMvNormal) = identity

bijector(d::FillVectorOfUnivariate{Continuous}) = bijector(d.v.value)
bijector(d::FillMatrixOfUnivariate{Continuous}) = up1(bijector(d.dists.value))
bijector(d::MatrixOfUnivariate{Discrete}) = Identity()
bijector(d::MatrixOfUnivariate{Discrete}) = identity
bijector(d::MatrixOfUnivariate{Continuous}) = TruncatedBijector(_minmax(d.dists)...)
bijector(d::VectorOfMultivariate{Discrete}) = Identity()
bijector(d::VectorOfMultivariate{Discrete}) = identity
for T in (:VectorOfMultivariate, :FillVectorOfMultivariate)
@eval begin
bijector(d::$T{Continuous, <:MvNormal}) = Identity()
bijector(d::$T{Continuous, <:TuringScalMvNormal}) = Identity()
bijector(d::$T{Continuous, <:TuringDiagMvNormal}) = Identity()
bijector(d::$T{Continuous, <:TuringDenseMvNormal}) = Identity()
bijector(d::$T{Continuous, <:MvNormalCanon}) = Identity()
bijector(d::$T{Continuous, <:MvNormal}) = identity
bijector(d::$T{Continuous, <:TuringScalMvNormal}) = identity
bijector(d::$T{Continuous, <:TuringDiagMvNormal}) = identity
bijector(d::$T{Continuous, <:TuringDenseMvNormal}) = identity
bijector(d::$T{Continuous, <:MvNormalCanon}) = identity
bijector(d::$T{Continuous, <:AbstractMvLogNormal}) = Log()
bijector(d::$T{Continuous, <:SimplexDistribution}) = SimplexBijector()
bijector(d::$T{Continuous, <:TuringDirichlet}) = SimplexBijector()
Expand Down
14 changes: 0 additions & 14 deletions src/compat/forwarddiff.jl
Original file line number Diff line number Diff line change
Expand Up @@ -3,20 +3,6 @@ import .ForwardDiff
_eps(::Type{<:ForwardDiff.Dual{<:Any, Real}}) = _eps(Real)
_eps(::Type{<:ForwardDiff.Dual{<:Any, <:Integer}}) = _eps(Real)

# AD implementations
function jacobian(
b::Union{<:ADBijector{<:ForwardDiffAD}, Inverse{<:ADBijector{<:ForwardDiffAD}}},
x::Real
)
return ForwardDiff.derivative(b, x)
end
function jacobian(
b::Union{<:ADBijector{<:ForwardDiffAD}, Inverse{<:ADBijector{<:ForwardDiffAD}}},
x::AbstractVector{<:Real}
)
return ForwardDiff.jacobian(b, x)
end

# Define forward-mode rule for ForwardDiff and don't trust support for ForwardDiff in Roots
# https://github.com/JuliaMath/Roots.jl/issues/314
function find_alpha(
Expand Down
17 changes: 1 addition & 16 deletions src/compat/reversediff.jl
Original file line number Diff line number Diff line change
Expand Up @@ -5,8 +5,7 @@ using ..ReverseDiff: ReverseDiff, @grad, value, track, TrackedReal, TrackedVecto
using Requires, LinearAlgebra

using ..Bijectors: Elementwise, SimplexBijector, maphcat, simplex_link_jacobian,
simplex_invlink_jacobian, simplex_logabsdetjac_gradient, ADBijector,
ReverseDiffAD, Inverse
simplex_invlink_jacobian, simplex_logabsdetjac_gradient, Inverse
import ..Bijectors: _eps, logabsdetjac, _logabsdetjac_scale, _simplex_bijector,
_simplex_inv_bijector, replace_diag, jacobian, getpd, lower,
_inv_link_chol_lkj, _link_chol_lkj, _transform_ordered, _transform_inverse_ordered,
Expand All @@ -17,20 +16,6 @@ import ChainRulesCore
using Compat: eachcol
using Distributions: LocationScale

# AD implementations
function jacobian(
b::Union{<:ADBijector{<:ReverseDiffAD}, Inverse{<:ADBijector{<:ReverseDiffAD}}},
x::Real
)
return ReverseDiff.gradient(x -> b(x[1]), [x])[1]
end
function jacobian(
b::Union{<:ADBijector{<:ReverseDiffAD}, Inverse{<:ADBijector{<:ReverseDiffAD}}},
x::AbstractVector{<:Real}
)
return ReverseDiff.jacobian(b, x)
end

_eps(::Type{<:TrackedReal{T}}) where {T} = _eps(T)
function Base.minimum(d::LocationScale{<:TrackedReal})
m = minimum(d.ρ)
Expand Down
18 changes: 1 addition & 17 deletions src/compat/tracker.jl
Original file line number Diff line number Diff line change
Expand Up @@ -12,8 +12,7 @@ using ..Tracker: Tracker,
param

import ..Bijectors
using ..Bijectors: Elementwise, SimplexBijector, ADBijector,
TrackerAD, Inverse, Stacked
using ..Bijectors: Elementwise, SimplexBijector, Inverse, Stacked

import ChainRulesCore
import LogExpFunctions
Expand Down Expand Up @@ -49,21 +48,6 @@ function Base.maximum(d::LocationScale{<:TrackedReal})
end
end

# AD implementations
function Bijectors.jacobian(
b::Union{<:ADBijector{<:TrackerAD}, Inverse{<:ADBijector{<:TrackerAD}}},
x::Real
)
return data(Tracker.gradient(b, x)[1])
end
function Bijectors.jacobian(
b::Union{<:ADBijector{<:TrackerAD}, Inverse{<:ADBijector{<:TrackerAD}}},
x::AbstractVector{<:Real}
)
# We extract `data` so that we don't return a `Tracked` type
return data(Tracker.jacobian(b, x))
end

# implementations for Shift bijector
function Bijectors._logabsdetjac_shift(a::TrackedReal, x::Real, ::Val{0})
return tracker_shift_logabsdetjac(a, x, Val(0))
Expand Down
12 changes: 0 additions & 12 deletions src/compat/zygote.jl
Original file line number Diff line number Diff line change
Expand Up @@ -32,18 +32,6 @@ end
end

# AD implementations
function jacobian(
b::Union{<:ADBijector{<:ZygoteAD}, Inverse{<:ADBijector{<:ZygoteAD}}},
x::Real
)
return Zygote.gradient(b, x)[1]
end
function jacobian(
b::Union{<:ADBijector{<:ZygoteAD}, Inverse{<:ADBijector{<:ZygoteAD}}},
x::AbstractVector{<:Real}
)
return Zygote.jacobian(b, x)
end
@adjoint function _logabsdetjac_scale(a::Real, x::Real, ::Val{0})
return _logabsdetjac_scale(a, x, Val(0)), Δ -> (inv(a) .* Δ, nothing, nothing)
end
Expand Down
32 changes: 1 addition & 31 deletions src/interface.jl
Original file line number Diff line number Diff line change
Expand Up @@ -18,31 +18,6 @@ elementwise(f) = Base.Fix1(broadcast, f)
# the way to go.
elementwise(f::ComposedFunction) = ComposedFunction(elementwise(f.outer), elementwise(f.inner))

#######################################
# AD stuff "extracted" from Turing.jl #
#######################################

abstract type ADBackend end
struct ForwardDiffAD <: ADBackend end
struct ReverseDiffAD <: ADBackend end
struct TrackerAD <: ADBackend end
struct ZygoteAD <: ADBackend end

const ADBACKEND = Ref(:forwarddiff)
setadbackend(backend_sym::Symbol) = setadbackend(Val(backend_sym))
setadbackend(::Val{:forwarddiff}) = ADBACKEND[] = :forwarddiff
setadbackend(::Val{:reversediff}) = ADBACKEND[] = :reversediff
setadbackend(::Val{:tracker}) = ADBACKEND[] = :tracker
setadbackend(::Val{:zygote}) = ADBACKEND[] = :zygote

ADBackend() = ADBackend(ADBACKEND[])
ADBackend(T::Symbol) = ADBackend(Val(T))
ADBackend(::Val{:forwarddiff}) = ForwardDiffAD
ADBackend(::Val{:reversediff}) = ReverseDiffAD
ADBackend(::Val{:tracker}) = TrackerAD
ADBackend(::Val{:zygote}) = ZygoteAD
ADBackend(::Val) = error("The requested AD backend is not available. Make sure to load all required packages.")

######################
# Bijector interface #
######################
Expand Down Expand Up @@ -197,12 +172,8 @@ Just an alias for `logabsdetjac(inverse(b), y)`.
logabsdetjacinv(b, y) = logabsdetjac(inverse(b), y)

##############################
# Example bijector: Identity #
# Example bijector: identity #
##############################
Identity() = identity

# Here we don't need to separate between batched version and non-batched, and so
# we can just overload `transform`, etc. directly.
transform(::typeof(identity), x) = copy(x)
transform!(::typeof(identity), x, y) = copy!(y, x)

Expand All @@ -213,7 +184,6 @@ logabsdetjac!(::typeof(identity), x, logjac) = logjac
# Bijectors includes #
######################
# General
include("bijectors/adbijector.jl")
include("bijectors/composed.jl")
include("bijectors/stacked.jl")

Expand Down
15 changes: 9 additions & 6 deletions src/transformed_distribution.jl
Original file line number Diff line number Diff line change
Expand Up @@ -35,11 +35,14 @@ transformed(d) = transformed(d, bijector(d))
Returns the constrained-to-unconstrained bijector for distribution `d`.
"""
bijector(td::TransformedDistribution) = bijector(td.dist) inverse(td.transform)
bijector(d::DiscreteUnivariateDistribution) = Identity()
bijector(d::DiscreteMultivariateDistribution) = Identity()
function bijector(td::TransformedDistribution)
b = bijector(td.dist)
return b === identity ? inverse(td.transform) : b inverse(td.transform)
end
bijector(d::DiscreteUnivariateDistribution) = identity
bijector(d::DiscreteMultivariateDistribution) = identity
bijector(d::ContinuousUnivariateDistribution) = TruncatedBijector(minimum(d), maximum(d))
bijector(d::Product{Discrete}) = Identity()
bijector(d::Product{Discrete}) = identity
function bijector(d::Product{Continuous})
return TruncatedBijector(_minmax(d.v)...)
end
Expand All @@ -52,8 +55,8 @@ end
end
end

bijector(d::Normal) = Identity()
bijector(d::Distributions.AbstractMvNormal) = Identity()
bijector(d::Normal) = identity
bijector(d::Distributions.AbstractMvNormal) = identity
bijector(d::Distributions.AbstractMvLogNormal) = elementwise(log)
bijector(d::PositiveDistribution) = elementwise(log)
bijector(d::SimplexDistribution) = SimplexBijector()
Expand Down
2 changes: 1 addition & 1 deletion test/bijectors/ordered.jl
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,7 @@ end
@test d_ordered.dist === d
@test d_ordered.transform isa OrderedBijector
y = randn(5)
x = inv(bijector(d_ordered))(y)
x = inverse(bijector(d_ordered))(y)
@test issorted(x)

d = Product(fill(Normal(), 5))
Expand Down
Loading

2 comments on commit 622865b

@torfjelde
Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@JuliaRegistrator
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Registration pull request created: JuliaRegistries/General/76927

After the above pull request is merged, it is recommended that a tag is created on this repository for the registered package version.

This will be done automatically if the Julia TagBot GitHub Action is installed, or can be done manually through the github interface, or via:

git tag -a v0.12.0 -m "<description of version>" 622865b4ae73c287c976e193449fe2b676c2d5fa
git push origin v0.12.0

Please sign in to comment.