Skip to content

Commit

Permalink
Merge pull request #709 from Teradata/bugfix_small_lang_model
Browse files Browse the repository at this point in the history
updated command to d/l model and updated links to notebook
  • Loading branch information
DallasBowden authored Sep 19, 2024
2 parents 065f0a9 + b4301b2 commit f363c76
Showing 1 changed file with 5 additions and 5 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -193,11 +193,11 @@
{
"cell_type": "code",
"execution_count": null,
"id": "a2eaca1b-1a48-43fc-b072-4f3ed946207b",
"id": "519fafdd-099f-4b6f-902d-8fb9034bf372",
"metadata": {},
"outputs": [],
"source": [
"!optimum-cli export onnx --opset 16 --trust-remote-code -m BAAI/bge-small-en-v1.5 bge-small-en-v1.5-onnx"
"!optimum-cli export onnx --opset 16 --trust-remote-code --task sentence-similarity -m BAAI/bge-small-en-v1.5 bge-small-en-v1.5-onnx"
]
},
{
Expand Down Expand Up @@ -373,9 +373,9 @@
"<p style = 'font-size:16px;font-family:Arial;color:#00233C'> Now we have initialized and loaded the model into Vantage. Now the notebooks listed below can be executed.\n",
"<ul style = 'font-size:16px;font-family:Arial;color:#00233C'> \n",
" <li>Semantic Similarity:Does Embeddings on CFPB complaints and uses TD_VECTORDISTANCE to find complaints that match some theme or topic <a href = './Semantic_Similarity_Python.ipynb'>Semantic Similarity </a></li> \n",
" <li>Semantic Clustering:Does Embeddings on CFPB complaints and uses K-MEANS to cluster and does Post-hoc explanations/topic detection on semantic clusters found. <a href = './SemanticClustering.ipynb '>Semantic Clustering </a></li> \n",
" <li>RAG Notebook for TD Catalog:Does a dump of TD Catalog Metadata on a table. Does embeddings on both Metadata + LLM prompt query. Does Semantic Similarity search of Top N Chunks and hands it off to a LLM to answer the prompt.<a href = './RAG_and_LLM_Querycatalogue.ipynb'>RAG and LLM to query Catalogue </a></li> \n",
" <li>RAG Notebook for SEC-10K PDF:Demo with some PDF parsing and chunking with a Teradata SEC-10K PDF, creates embedding and uses LLM to answer prompts <a href = './RAG_and_LLM_QueryPDF.ipynb'>RAG and LLM to query Pdf </a></li> \n",
" <li>Semantic Clustering:Does Embeddings on CFPB complaints and uses K-MEANS to cluster and does Post-hoc explanations/topic detection on semantic clusters found. <a href = './Semantic_Clustering_Python.ipynb'>Semantic Clustering </a></li> \n",
" <li>RAG Notebook for TD Catalog:Does a dump of TD Catalog Metadata on a table. Does embeddings on both Metadata + language model prompt query. Does Semantic Similarity search of Top N Chunks and hands it off to a LLM to answer the prompt.<a href = './RAG_and_Bedrock_Querycatalogue.ipynb'>RAG and Bedrock to query Catalogue </a></li> \n",
" <li>RAG Notebook for SEC-10K PDF:Demo with some PDF parsing and chunking with a Teradata SEC-10K PDF, creates embedding and uses language model to answer prompts <a href = './RAG_and_Bedrock_QueryPDF.ipynb'>RAG and Bedrock to query Pdf </a></li> \n",
" \n",
"</ul>\n",
" </p>"
Expand Down

0 comments on commit f363c76

Please sign in to comment.