验证码识别 - 该项目是基于 CNN5/DenseNet+BLSTM/LSTM+CTC 来实现验证码识别. 该项目仅用于训练,如果需要部署模型请移步:
https://github.com/kerlomz/captcha_platform (通用WEB服务,HTTP请求调用)
https://github.com/kerlomz/captcha_library_c (动态链接库,DLL调用,基于TensoFlow C++)
https://github.com/kerlomz/captcha_demo_csharp (C#源码调用,基于TensorFlowSharp)
许多人问我,部署识别也需要GPU吗?我的答案是,完全没必要。理想中是用GPU训练,使用CPU部署识别服务,部署如果也需要这么高的成本,那还有什么现实意义和应用场景呢,实测阿里云最低配1核1G的配置识别1次大约30ms,我的i7-8700k大约10-15ms之间。
-
如何使用CPU训练:
本项目默认安装TensorFlow-GPU版,建议使用GPU进行训练,如需换用CPU训练请替换
requirements.txt
文件中的tensorflow-gpu==1.6.0
为tensorflow==1.6.0
,其他无需改动。 -
关于LSTM网络:
保证CNN得到的featuremap输入到LSTM时的宽度至少大于等于最大字符数的3倍左右,即time_step大于等于最大字符数3倍。
-
No valid path found 问题解决:
在
model.yaml
中修改Pretreatment
->Resize
的参数,自行调整为合适的值,总结了百来个验证码训练经验,可以尝试这个较为通用的值:Resize: [150, 50]
,或者使用代码tutorial.py
(自动生成配置文件、打包样本、训练一体化),填写训练集路径执行。 -
参数修改:
切记,ModelName 是绑定一个模型的唯一标志,如果修改了训练参数如:ImageWidth,ImageHeight,Resize,CharSet,CNNNetwork,RecurrentNetwork,HiddenNum 这类影响计算图的参数,需要删除model路径下的旧文件,重新训练,或者使用新的ModelName 重新训练,否则默认作为断点续练。
如果你准备使用GPU训练,请先安装CUDA和cuDNN,可以了解下官方测试过的编译版本对应: https://www.tensorflow.org/install/install_sources#tested_source_configurations Github上可以下载到第三方编译好的TensorFlow的WHL安装包:
https://github.com/fo40225/tensorflow-windows-wheel
CUDA下载地址:https://developer.nvidia.com/cuda-downloads
cuDNN下载地址:https://developer.nvidia.com/rdp/form/cudnn-download-survey (需要注册账号)
笔者使用的版本为:CUDA10+cuDNN7.3.1+TensorFlow 1.12
-
安装Python 3.6 环境(包含pip)
-
安装虚拟环境 virtualenv
pip3 install virtualenv
-
为该项目创建独立的虚拟环境:
virtualenv -p /usr/bin/python3 venv # venv is the name of the virtual environment. cd venv/ # venv is the name of the virtual environment. source bin/activate # to activate the current virtual environment. cd captcha_trainer # captcha_trainer is the project path.
-
安装本项目的依赖列表:
pip install -r requirements.txt
本项目依赖于训练配置config.yaml
和模型配置model.yaml
,初始化项目的时候请复制config_demo.yaml
到当前目录下命名为config.yaml
,model_demo.yaml
同理。或者可以使用tutorial.py
自动设置模型配置。
训练流程:配置好两个配置文件后,执行trains.py
中的代码,读取配置,根据model.yaml
配置文件构建神经网络计算图,依据config.yaml
的配置参数进行训练。
关于config.yaml
中的训练参数有几点建议:
-
BatchSize(训练批次大小)与TestBatchSize(测试批次大小)是需要大家关注的,建议根据显卡条件进行调整,显存小的建议BatchSize不要太大,TestBatchSize也是,我提供的默认配置是基于显存8G,使用率50%设置的,请悉知。
-
LearningRate(学习率)也是需要关注的,深度学习本质就是调参,一般的模型可以保持默认的配置无需调整,有些模型想要获得更高的识别精度可以先使用0.01快速收敛,准确率差不多95%左右再使用0.001/0.0001提高精度。
-
TestSetNum(测试集数目),这个是专门为懒人(说我自己)设计提供的,根据给定的测试集数目切割训练集,有一个前提,测试集必须是随机的,随机的,随机的,重要的事说三遍,有些人用Windows资源管理器打开,一拖动选择几百个,默认都是按名称排序的,如果名称是标注,那么就不是随机了,也就是很可能你取的测试集是标注为0~3之间的图片,这样可能导致永远无法收敛。
-
TrainRegex 和 TestRegex,正则匹配,请各位采集样本的时候,尽量和我给的示例保持一致吧,正则问题请谷歌,如果是为1111.jpg这种命名的话,这里提供了一个批量转换的代码:
import re import os import hashlib # 训练集路径 root = r"D:\TrainSet\***" all_files = os.listdir(root) for file in all_files: old_path = os.path.join(root, file) # 已被修改过忽略 if len(file.split(".")[0]) > 32: continue # 采用标注_文件md5码.图片后缀 进行命名 with open(old_path, "rb") as f: _id = hashlib.md5(f.read()).hexdigest() new_path = os.path.join(root, file.replace(".", "_{}.".format(_id))) # 重复标签的时候会出现形如:abcd (1).jpg 这种形式的文件名 new_path = re.sub(" \(\d+\)", "", new_path) print(new_path) os.rename(old_path, new_path)
-
config.yaml - System Config
# - requirement.txt - GPU: tensorflow-gpu, CPU: tensorflow # - If you use the GPU version, you need to install some additional applications. # TrainRegex and TestRegex: Default matching apple_20181010121212.jpg file. # - The Default is .*?(?=_.*\.) # TrainsPath and TestPath: The local absolute path of your training and testing set. # TestSetNum: This is an optional parameter that is used when you want to extract some of the test set # - from the training set when you are not preparing the test set separately. System: DeviceUsage: 0.5 TrainRegex: '.*?(?=_)' TestRegex: '.*?(?=_)' TestSetNum: 300 # CNNNetwork: [CNN5, DenseNet] # RecurrentNetwork: [BLSTM, LSTM] # - The recommended configuration is CNN5+BLSTM / DenseNet+BLSTM # HiddenNum: [64, 128, 256] # - This parameter indicates the number of nodes used to remember and store past states. NeuralNet: CNNNetwork: CNN5 RecurrentNetwork: BLSTM HiddenNum: 64 KeepProb: 0.99 # SavedEpochs: A Session.run() execution is called a Epochs, # - Used to save traininsed to calculate accuracy, Default value is 100. # TestNum: The number of samples for each test batch. # - A test for every saved steps. # CompileAcc: When the accuracy reaches the set threshold, # - the model will be compiled together each time it is archived. # - Available for specific usage scenarios. # EndAcc: Finish the training when the accuracy reaches [EndAcc*100]%. # EndEpochs: Finish the training when the epoch is greater than the defined epoch. # PreprocessCollapseRepe ated: If True, then a preprocessing step runs # - before loss calculation, wherein repeated labels passed to the loss # - are merged into single labels. This is useful if the training labels come # - from, e.g., forced alignments and therefore have unnecessary repetitions. # CTCMergeRepeated: If False, then deep within the CTC calculation, # - repeated non-blank labels will not be merged and are interpreted # - as individual labels. This is a simplified (non-standard) version of CTC. Trains: SavedSteps: 100 ValidationSteps: 500 EndAcc: 0.98 EndEpochs: 1 BatchSize: 64 TestBatchSize: 300 LearningRate: 0.01 DecayRate: 0.98 DecaySteps: 100000 PreprocessCollapseRepeated: False CTCMergeRepeated: True
There are several common examples of TrainRegex: i. apple_20181010121212.jpg
.*?(?=_.*\.)
ii apple.png
.*?(?=\.)
-
model.yaml - Model Config
# Sites: A bindable parameter used to select a model. # - If this parameter is defined, # - it can be identified by using the model_site parameter # - to identify a model that is inconsistent with the actual size of the current model. # ModelName: Corresponding to the model file in the model directory, # - such as YourModelName.pb, fill in YourModelName here. # ModelType: This parameter is also used to locate the model. # - The difference from the sites is that if there is no corresponding site, # - the size will be used to assign the model. # - If a model of the corresponding size and corresponding to the ModelType is not found, # - the model belonging to the category is preferentially selected. # CharSet: Provides a default optional built-in solution: # - [ALPHANUMERIC, ALPHANUMERIC_LOWER, ALPHANUMERIC_UPPER, # -- NUMERIC, ALPHABET_LOWER, ALPHABET_UPPER, ALPHABET] # - Or you can use your own customized character set like: ['a', '1', '2']. # CharExclude: CharExclude should be a list, like: ['a', '1', '2'] # - which is convenient for users to freely combine character sets. # - If you don't want to manually define the character set manually, # - you can choose a built-in character set # - and set the characters to be excluded by CharExclude parameter. Model: Sites: [] ModelName: YourModelName ModelType: 150x50 CharSet: ALPHANUMERIC_LOWER CharExclude: [] CharReplace: {} ImageWidth: 150 ImageHeight: 50 # Binaryzation: [-1: Off, >0 and < 255: On]. # Smoothing: [-1: Off, >0: On]. # Blur: [-1: Off, >0: On]. Pretreatment: Binaryzation: -1 Smoothing: -1 Blur: -1 Resize: [150, 50]
-
预处理预览工具,只支持为打包的训练集查看
python -m tools.preview
-
新手指南 (只支持字符集推荐,我觉得是个鸡肋各位请忽略)
python -m tools.navigator
-
PyInstaller 一键打包(训练的话支持不好,部署的打包效果不错)
pip install pyinstaller python -m tools.package
- 命令行或终端运行:
python trains.py
- 使用 PyCharm 运行,右键 Run
遵循SATA原则,使用本项目请不要吝啬给颗星
之前专门为该项目写的文章,欢迎大家点评