Preparing the metrics for evaluation of
SynthRAD2023 Grand Challenge
Explore the docs »
View Demo
·
Report Bug
·
Request Feature
Assess the quality of the synthetic computed tomography (sCT) images against CT. N.B. At the moment only the image similarity metrics are usable. Dose metrics will be updated when the validation phase is open.
To get a local copy up and running follow these simple steps.
- Clone the repo
git clone https://github.com/SynthRAD2023/metrics.git
or
git clone [email protected]:SynthRAD2023/metrics.git
- numpy
pip install -r requirements.txt
The metrics are computed in two files: image_metrics.py
and dose_metrics.py
.
These compute respectively,
- The image similarity between the ground-truth CT and the synthetic CT. Thes metrics include the mean squared error (MSE), peak signal to noise ratio (PSNR), and structural similarity (SSIM).
- The metrics to compare the dose delivered to the ground truth and the synthetic CT. These metrics include the mean absolute dose (MAE), a dose-volume histogram (DVH) metric, and the gamma pass rate.
In general, any function can be used in the following way.
a(input, output)
description:
compute the metric a (e.g., mse, psnr, ssim) between input and output
arguments:
input: The numpy array of the ground-truth image
output: The numpy array of the predicted image
All metrics can be computed by using the score_patient
, which loads the data and returns all metrics:
Image metrics
metrics = ImageMetrics()
ground_truth_path = "path/to/ground_truth.mha"
predicted_path = "path/to/prediction.mha"
mask_path = "path/to/mask.mha"
print(metrics.score_patient(ground_truth_path, predicted_path, mask_path))
Dose metrics
dose_path = 'path/to/treatment_plans'
predicted_path = "path/to/prediction.mha"
patient_id="1BA000"
metrics = DoseMetrics(dose_path)
print(metrics.score_patient(patient_id, predicted_path))
See the open issues for a list of proposed features (and known issues).
Contributions are what make the open source community such an amazing place to be learn, inspire, and create. Any contributions you make are greatly appreciated.
- Fork the Project
- Create your Feature Branch (
git checkout -b feature/AmazingFeature
) - Commit your Changes (
git commit -m 'Add some AmazingFeature'
) - Push to the Branch (
git push origin feature/AmazingFeature
) - Open a Pull Request
Distributed under the GNU General Public License v3.0. See LICENSE
for more information.
Matteo Maspero - @matteomasperonl - [email protected]
Project Link: https://github.com/SynthRAD2023/metrics