DEIM is an advanced training framework designed to enhance the matching mechanism in DETRs, enabling faster convergence and improved accuracy. It serves as a robust foundation for future research and applications in the field of real-time object detection.
1. Intellindust AI Lab Β 2. City University of Hong Kong Β 3. Great Bay University Β 4. Hefei Normal University
**π§ Corresponding author:** [email protected]
If you like our work, please give us a β!
- [2024.12.26] A more efficient implementation of Dense O2O, achieving nearly a 30% improvement in loading speed (See the pull request for more details). Huge thanks to my colleague Longfei Liu.
- [2024.12.03] Release DEIM series. Besides, this repo also supports the re-implmentations of D-FINE and RT-DETR.
Model | Dataset | APD-FINE | APDEIM | #Params | Latency | GFLOPs | config | checkpoint |
---|---|---|---|---|---|---|---|---|
S | COCO | 48.7 | 49.0 | 10M | 3.49ms | 25 | yml | ckpt |
M | COCO | 52.3 | 52.7 | 19M | 5.62ms | 57 | yml | ckpt |
L | COCO | 54.0 | 54.7 | 31M | 8.07ms | 91 | yml | ckpt |
X | COCO | 55.8 | 56.5 | 62M | 12.89ms | 202 | yml | ckpt |
Model | Dataset | APRT-DETRv2 | APDEIM | #Params | Latency | GFLOPs | config | checkpoint |
---|---|---|---|---|---|---|---|---|
S | COCO | 47.9 | 49.0 | 20M | 4.59ms | 60 | yml | ckpt |
M | COCO | 49.9 | 50.9 | 31M | 6.40ms | 92 | yml | ckpt |
M* | COCO | 51.9 | 53.2 | 33M | 6.90ms | 100 | yml | ckpt |
L | COCO | 53.4 | 54.3 | 42M | 9.15ms | 136 | yml | ckpt |
X | COCO | 54.3 | 55.5 | 76M | 13.66ms | 259 | yml | ckpt |
conda create -n deim python=3.11.9
conda activate deim
pip install -r requirements.txt
COCO2017 Dataset
-
Download COCO2017 from OpenDataLab or COCO.
-
Modify paths in coco_detection.yml
train_dataloader: img_folder: /data/COCO2017/train2017/ ann_file: /data/COCO2017/annotations/instances_train2017.json val_dataloader: img_folder: /data/COCO2017/val2017/ ann_file: /data/COCO2017/annotations/instances_val2017.json
Custom Dataset
To train on your custom dataset, you need to organize it in the COCO format. Follow the steps below to prepare your dataset:
-
Set
remap_mscoco_category
toFalse
:This prevents the automatic remapping of category IDs to match the MSCOCO categories.
remap_mscoco_category: False
-
Organize Images:
Structure your dataset directories as follows:
dataset/ βββ images/ β βββ train/ β β βββ image1.jpg β β βββ image2.jpg β β βββ ... β βββ val/ β β βββ image1.jpg β β βββ image2.jpg β β βββ ... βββ annotations/ βββ instances_train.json βββ instances_val.json βββ ...
images/train/
: Contains all training images.images/val/
: Contains all validation images.annotations/
: Contains COCO-formatted annotation files.
-
Convert Annotations to COCO Format:
If your annotations are not already in COCO format, you'll need to convert them. You can use the following Python script as a reference or utilize existing tools:
import json def convert_to_coco(input_annotations, output_annotations): # Implement conversion logic here pass if __name__ == "__main__": convert_to_coco('path/to/your_annotations.json', 'dataset/annotations/instances_train.json')
-
Update Configuration Files:
Modify your custom_detection.yml.
task: detection evaluator: type: CocoEvaluator iou_types: ['bbox', ] num_classes: 777 # your dataset classes remap_mscoco_category: False train_dataloader: type: DataLoader dataset: type: CocoDetection img_folder: /data/yourdataset/train ann_file: /data/yourdataset/train/train.json return_masks: False transforms: type: Compose ops: ~ shuffle: True num_workers: 4 drop_last: True collate_fn: type: BatchImageCollateFunction val_dataloader: type: DataLoader dataset: type: CocoDetection img_folder: /data/yourdataset/val ann_file: /data/yourdataset/val/ann.json return_masks: False transforms: type: Compose ops: ~ shuffle: False num_workers: 4 drop_last: False collate_fn: type: BatchImageCollateFunction
COCO2017
- Training
CUDA_VISIBLE_DEVICES=0,1,2,3 torchrun --master_port=7777 --nproc_per_node=4 train.py -c configs/deim_dfine/deim_hgnetv2_${model}_coco.yml --use-amp --seed=0
- Testing
CUDA_VISIBLE_DEVICES=0,1,2,3 torchrun --master_port=7777 --nproc_per_node=4 train.py -c configs/deim_dfine/deim_hgnetv2_${model}_coco.yml --test-only -r model.pth
- Tuning
CUDA_VISIBLE_DEVICES=0,1,2,3 torchrun --master_port=7777 --nproc_per_node=4 train.py -c configs/deim_dfine/deim_hgnetv2_${model}_coco.yml --use-amp --seed=0 -t model.pth
Customizing Batch Size
For example, if you want to double the total batch size when training D-FINE-L on COCO2017, here are the steps you should follow:
-
Modify your dataloader.yml to increase the
total_batch_size
:train_dataloader: total_batch_size: 64 # Previously it was 32, now doubled
-
Modify your deim_hgnetv2_l_coco.yml. Hereβs how the key parameters should be adjusted:
optimizer: type: AdamW params: - params: '^(?=.*backbone)(?!.*norm|bn).*$' lr: 0.000025 # doubled, linear scaling law - params: '^(?=.*(?:encoder|decoder))(?=.*(?:norm|bn)).*$' weight_decay: 0. lr: 0.0005 # doubled, linear scaling law betas: [0.9, 0.999] weight_decay: 0.0001 # need a grid search ema: # added EMA settings decay: 0.9998 # adjusted by 1 - (1 - decay) * 2 warmups: 500 # halved lr_warmup_scheduler: warmup_duration: 250 # halved
Customizing Input Size
If you'd like to train DEIM on COCO2017 with an input size of 320x320, follow these steps:
-
Modify your dataloader.yml:
train_dataloader: dataset: transforms: ops: - {type: Resize, size: [320, 320], } collate_fn: base_size: 320 dataset: transforms: ops: - {type: Resize, size: [320, 320], }
-
Modify your dfine_hgnetv2.yml:
eval_spatial_size: [320, 320]
Deployment
- Setup
pip install onnx onnxsim
- Export onnx
python tools/deployment/export_onnx.py --check -c configs/deim_dfine/deim_hgnetv2_${model}_coco.yml -r model.pth
- Export tensorrt
trtexec --onnx="model.onnx" --saveEngine="model.engine" --fp16
Inference (Visualization)
- Setup
pip install -r tools/inference/requirements.txt
- Inference (onnxruntime / tensorrt / torch)
Inference on images and videos is now supported.
python tools/inference/onnx_inf.py --onnx model.onnx --input image.jpg # video.mp4
python tools/inference/trt_inf.py --trt model.engine --input image.jpg
python tools/inference/torch_inf.py -c configs/deim_dfine/deim_hgnetv2_${model}_coco.yml -r model.pth --input image.jpg --device cuda:0
Benchmark
- Setup
pip install -r tools/benchmark/requirements.txt
- Model FLOPs, MACs, and Params
python tools/benchmark/get_info.py -c configs/deim_dfine/deim_hgnetv2_${model}_coco.yml
- TensorRT Latency
python tools/benchmark/trt_benchmark.py --COCO_dir path/to/COCO2017 --engine_dir model.engine
Fiftyone Visualization
- Setup
pip install fiftyone
- Voxel51 Fiftyone Visualization (fiftyone)
python tools/visualization/fiftyone_vis.py -c configs/deim_dfine/deim_hgnetv2_${model}_coco.yml -r model.pth
Others
- Auto Resume Training
bash reference/safe_training.sh
- Converting Model Weights
python reference/convert_weight.py model.pth
If you use DEIM
or its methods in your work, please cite the following BibTeX entries:
bibtex
@misc{huang2024deim,
title={DEIM: DETR with Improved Matching for Fast Convergence},
author={Shihua Huang, Zhichao Lu, Xiaodong Cun, Yongjun Yu, Xiao Zhou, and Xi Shen},
year={2024},
eprint={2412.04234},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
Our work is built upon D-FINE and RT-DETR.
β¨ Feel free to contribute and reach out if you have any questions! β¨