| Dataset | Domain | Freq. | Num. Series | Min Length | Avg Length | Max Length | Prediction Length (H) | Link |
|---|---|---|---|---|---|---|---|---|
| Australian Electricity | Energy | 30min | 5 | 230,736 | 231,052 | 232,272 | 48 | link |
| Car Parts | Retail | 1M | 2,674 | 51 | 51 | 51 | 12 | link |
| Covid Deaths | Healthcare | 1D | 266 | 212 | 212 | 212 | 30 | link |
| Dominick | Retail | 1D | 100,014 | 201 | 296 | 399 | 8 | link |
| Exchange Rate | Finance | 1B | 8 | 7,588 | 7,588 | 7,588 | 30 | link |
| FRED-MD | Economics | 1M | 107 | 728 | 728 | 728 | 12 | link |
| Hospital | Healthcare | 1M | 767 | 84 | 84 | 84 | 12 | link |
| NN5 (Weekly) | Finance | 1W | 111 | 113 | 113 | 113 | 8 | link |
| Weather | Nature | 1D | 3,010 | 1,332 | 14,296 | 65,981 | 30 | link |
| Transportation Signal | Transport | 1D | 3,010 | 1,332 | 14,296 | 65,981 | 30 | link |
| Synthetic (10 kernels) | Numerical | - | 1,000,000 | 1,024 | 1,024 | 1,024 | 64 | link |
Due to significant differences in model dependencies, we highly recommend using a package manager (e.g., conda or venv) and setting up separate Python environments for each tested model. This ensures compatibility and prevents conflicts during installation and execution.
Note: This recommendation applies only to running third-party object models. Our method, stg_trust_indicator, is lightweight and does not require complex dependencies.
The installation instructions for each model can be found in their official repositories:
-
Chronos-T5 and Chronos-Bolt
https://github.com/amazon-science/chronos-forecasting/tree/main -
Lag_LLaMA
https://github.com/time-series-foundation-models/lag-llama -
LLM4CP (LLM for Channel Prediction)
https://github.com/liuboxun/LLM4CP/tree/master
- Chronos-T5 and Chronos-Bolt
source activate isotropy
# chronos-t5
python stg_trust_indicator.py --num_experiments 10 --input_len 500 --output_len 64 --num_rows 400 --model_name amazon/chronos-t5-small --data_file ../data/single_kernelsynth_1000.arrow --result_all_folder result_folder
python stg_trust_indicator.py --num_experiments 10 --model_name amazon/chronos-t5-small --real_data standard --num_rows 100 --result_all_folder result_folder
# chronos-bolt
python stg_trust_indicator.py --num_experiments 10 --input_len 500 --output_len 64 --num_rows 400 --model_name amazon/chronos-bolt-small --data_file ../data/single_kernelsynth_1000.arrow --result_all_folder result_folder
python stg_trust_indicator.py --num_experiments 10 --model_name amazon/chronos-bolt-small --real_data standard --num_rows 100 --result_all_folder result_folder
# patchtst
python stg_trust_indicator.py --num_experiments 10 --input_len 500 --output_len 64 --num_rows 2000 --model_name patchtst --data_file ../data/single_kernelsynth_1000.arrow --result_all_folder result_folder
python stg_trust_indicator.py --num_experiments 10 --model_name patchtst --real_data standard --num_rows 2000 --result_all_folder result_folder- Moirai and Lag_llama
These models typically require a different environment due to dependency differences.
conda deactivate
source activate moirai
# moirai
python stg_trust_indicator.py --num_experiments 10 --input_len 500 --output_len 64 --num_rows 1000 --model_name moirai --data_file ../data/single_kernelsynth_1000.arrow --result_all_folder result_folder
python stg_trust_indicator.py --num_experiments 10 --model_name moirai --real_data standard --num_rows 1000 --result_all_folder result_folder
conda deactivate
source activate lag_llama
# lag_llama
python stg_trust_indicator.py --num_experiments 10 --input_len 500 --output_len 64 --num_rows 400 --model_name lag_llama --data_file ../data/single_kernelsynth_1000.arrow --result_all_folder result_folder
python stg_trust_indicator.py --num_experiments 10 --model_name lag_llama --real_data standard --num_rows 700 --result_all_folder result_folder- LLM4CP
Generative model for Channel Prediction.
# llm4cp
python stg_trust_indicator.py --num_experiments 10 --model_name llm4cp_fdd --num_rows 500
python stg_trust_indicator.py --num_experiments 10 --model_name llm4cp_tdd --num_rows 500If you found our work useful, please cite our work.
@article{
shelim2025is,
title={Is isotropy a good proxy for generalization in time series forecasting with transformers?},
author={Rashed Shelim and Shengzhe Xu and Walid Saad and Naren Ramakrishnan},
journal={Transactions on Machine Learning Research},
issn={2835-8856},
year={2025},
url={https://openreview.net/forum?id=iUtDYVQzFq},
note={}
}