Skip to content

Releases: SebKrantz/collapse

collapse version 1.6.4

09 Jul 11:45
498817f
Compare
Choose a tag to compare

collapse 1.6.4

A patch for 1.6.0 which fixes (minor) issues flagged by CRAN and adds a few handy extras.

Bug Fixes

  • Puts examples using the new base pipe |> inside \donttest{} so that they don't fail CRAN tests on older R versions.

  • Fixes a LTO issue caused by a small mistake in a header file (which does not have any implications to the user but was detected by CRAN checks).

  • Checks on the gcc11 compiler flagged an additional issue with a pointer pointing to element -1 of a C array (which I had done on purpose to index it with an R integer vector).

  • Fixes a valgrind issue because of comparing an uninitialized value to something.

Additions

  • Added a function fcomputev, which allows selecting columns and transforming them with a function in one go. The keep argument can be used to add columns to the selection that are not transformed.

  • Added a function setLabels as a wrapper around vlabels<- to facilitate setting variable labels inside pipes.

  • Function rm_stub now has an argument regex = TRUE which triggers a call to gsub and allows general removing of character sequences in column names on the fly.

Improvements

  • vlabels<- and setLabels now support list of variable labels or other attributes (i.e. the value is internally subset using [[, not [). Thus they are now general functions to attach a vector or list of attributes to columns in a list / data frame.

Other Changes

  • CRAN maintainers have asked me to remove a line in a Makevars file intended to reduce the size of Rcpp object files (which has been there since version 1.4). So the installed size of the package may now be larger.

collapse version 1.6.0

27 Jun 22:09
61e72fe
Compare
Choose a tag to compare

collapse 1.6.0

collapse 1.6.0, released end of June 2021, presents some significant improvements in the user-friendliness, compatibility and programmability of the package, as well as a few function additions.

Changes to Functionality

  • ffirst, flast, fnobs, fsum, fmin and fmax were rewritten in C. The former three now also support list columns (where NULL or empty list elements are considered missing values when na.rm = TRUE), and are extremely fast for grouped aggregation if na.rm = FALSE. The latter three also support and return integers, with significant performance gains, even compared to base R. Code using these functions expecting an error for list-columns or expecting double output even if the input is integer should be adjusted.

  • collapse now directly supports sf data frames through functions like fselect, fsubset, num_vars, qsu, descr, varying, funique, roworder, rsplit, fcompute etc., which will take along the geometry column even if it is not explicitly selected (mirroring dplyr methods for sf data frames). This is mostly done internally at C-level, so functions remain simple and fast. Existing code that explicitly selects the geometry column is unaffected by the change, but code of the form sf_data %>% num_vars %>% qDF %>% ..., where columns excluding geometry were selected and the object later converted to a data frame, needs to be rewritten as sf_data %>% qDF %>% num_vars %>% .... A short vignette was added describing the integration of collapse and sf.

  • I've received several requests for increased namespace consistency. collapse functions were named to be consistent with base R, dplyr and data.table, resulting in names like is.Date, fgroup_by or settransformv. To me this makes sense, but I've been convinced that a bit more consistency is advantageous. Towards that end I have decided to eliminate the '.' notation of base R and to remove some unexpected capitalizations in function names giving some people the impression I was using camel-case. The following functions are renamed:
    fNobs -> fnobs, fNdistinct -> fndistinct, pwNobs -> pwnobs, fHDwithin -> fhdwithin
    fHDbetween -> fhdbetween, as.factor_GRP -> as_factor_GRP, as.factor_qG -> as_factor_qG, is.GRP -> is_GRP, is.qG -> is_qG, is.unlistable -> is_unlistable, is.categorical -> is_categorical, is.Date -> is_date, as.numeric_factor -> as_numeric_factor, as.character_factor -> as_character_factor,
    Date_vars -> date_vars.
    This is done in a very careful manor, the others will stick around for a long while (end of 2022), and the generics of fNobs, fNdistinct, fHDbetween and fHDwithin will be kept in the package for an indeterminate period, but their core methods will not be exported beyond 2022. I will start warning about these renamed functions in 2022. In the future I will undogmatically stick to a function naming style with lowercase function names and underslashes where words need to be split. Other function names will be kept. To say something about this: The quick-conversion functions qDF qDT, qM, qF, qG are consistent and in-line with data.table (setDT etc.), and similarly the operators L, F, D, Dlog, G, B, W, HDB, HDW. I'll keep GRP, BY and TRA, for lack of better names, parsimony and because they are central to the package. The camel case will be kept in helper functions setDimnames etc. because they work like stats setNames and do not modify the argument by reference (like settransform or setrename and various data.table functions). Functions copyAttrib and copyMostAttrib are exports of like-named functions in the C API and thus kept as they are. Finally, I want to keep fFtest the way it is because the F-distribution is widely recognized by a capital F.

  • I've updated the wlddev dataset with the latest data from the World Bank, and also added a variable giving the total population (which may be useful e.g. for population-weighted aggregations across regions). The extra column could invalidate codes used to demonstrate something (I had to adjust some examples, tests and code in vignettes).

Additions

  • Added a function fcumsum (written in C), permitting flexible (grouped, ordered) cumulative summations on matrix-like objects (integer or double typed) with extra methods for grouped data frames and panel series and data frames. Apart from the internal grouping, and an ordering argument allowing cumulative sums in a different order than data appear, fcumsum has 2 options to deal with missing values. The default (na.rm = TRUE) is to skip (preserve) missing values, whereas setting fill = TRUE allows missing values to be populated with the previous value of the cumulative sum (starting from 0).

  • Added a function alloc to efficiently generate vectors initialized with any value (faster than rep_len).

  • Added a function pad to efficiently pad vectors / matrices / data.frames with a value (default is NA). This function was mainly created to make it easy to expand results coming from a statistical model fitted on data with missing values to the original length. For example let data <- na_insert(mtcars); mod <- lm(mpg ~ cyl, data), then we can do settransform(data, resid = pad(resid(mod), mod$na.action)), or we could do pad(model.matrix(mod), mod$na.action) or pad(model.frame(mod), mod$na.action) to receive matrices and data frames from model data matching the rows of data. pad is a general function that will also work with mixed-type data. It is also possible to pass a vector of indices matching the rows of the data to pad, in which case pad will fill gaps in those indices with a value/row in the data.

Improvements

  • Full data.table support, including reference semantics (set*, :=)!! There is some complex C-level programming behind data.table's operations by reference. Notably, additional (hidden) column pointers are allocated to be able to add columns without taking a shallow copy of the data.table, and an ".internal.selfref" attribute containing an external pointer is used to check if any shallow copy was made using base R commands like <-. This is done to avoid even a shallow copy of the data.table in manipulations using := (and is in my opinion not worth it as even large tables are shallow copied by base R (>=3.1.0) within microseconds and all of this complicates development immensely). Previously, collapse treated data.table's like any other data frame, using shallow copies in manipulations and preserving the attributes (thus ignoring how data.table works internally). This produced a warning whenever you wanted to use data.table reference semantics (set*, :=) after passing the data.table through a collapse function such as collap, fselect, fsubset, fgroup_by etc. From v1.6.0, I have adopted essential C code from data.table to do the overallocation and generate the ".internal.selfref" attribute, thus seamless workflows combining collapse and data.table are now possible. This comes at a cost of about 2-3 microseconds per function, as to do this I have to shallow copy the data.table again and add extra column pointers and an ".internal.selfref" attribute telling data.table that this table was not copied (it seems to be the only way to do it for now). This integration encompasses all data manipulation functions in collapse, but not the Fast Statistical Functions themselves. Thus you can do agDT <- DT %>% fselect(id, col1:coln) %>% collap(~id, fsum); agDT[, newcol := 1], but you would need to do add a qDT after a function like fsum if you want to use reference semantics without incurring a warning: agDT <- DT %>% fselect(id, col1:coln) %>% fgroup_by(id) %>% fsum %>% qDT; agDT[, newcol := 1]. collapse appears to be the first package that attempts to account for data.table's internal working without importing data.table, and qDT is now the fastest way to create a fully functional data.table from any R object. A global option "collapse_DT_alloccol" was added to regulate how many columns collapse overallocates when creating data.table's. The default is 100, which is lower than the data.table default of 1024. This was done to increase efficiency of the additional shallow copies, and may be changed by the user.

  • Programming enabled with fselect and fgroup_by (you can now pass vectors containing column names or indices). Note that instead of fselect you should use get_vars for standard eval programming.

  • fselect and fsubset support in-place renaming e.g. fselect(data, newname = var1, var3:varN),
    fsubset(data, vark > varp, newname = var1, var3:varN).

  • collap supports renaming columns in the custom argument, e.g. collap(data, ~ id, custom = list(fmean = c(newname = "var1", "var2"), fmode = c(newname = 3), flast = is_date)).

  • Performance improvements: fsubset / ss return the data or perform a simple column subset without deep copying the data if all rows are selected through a logical expression. fselect and get_vars, num_vars etc. are slightly faster through data frame subsetting done fully in C. ftransform / fcompute use alloc instead of base::rep to replicate a scalar value which is slightly more efficient.

  • fcompute now has a keep argument, to preserve several existing columns when computing columns on a data frame.

  • replace_NA now has a cols argument, so we can do replace_NA(data, cols = is.numeric), to replace NA's in numeric columns. I note that for big numeric data data.table::setnafill is the most efficient solution.

  • fhdbetween and fhdwithin have an effect argument in plm methods, allowing centering on selected identifiers. The default is still to center on all panel identifiers.
    ...

Read more

collapse version 1.5.3

09 Mar 21:33
5ce5a53
Compare
Choose a tag to compare

Changes to Functionality

  • The first argument of ftransform was renamed to .data from X. This was done to enable the user to transform columns named "X". For the same reason the first argument of frename was renamed to .x from x (not .data to make it explicit that .x can be any R object with a "names" attribute). It is not possible to depreciate X and x without at the same time undoing the benefits of the argument renaming, thus this change is immediate and code breaking in rare cases where the first argument is explicitly set.

  • The function is.regular to check whether an R object is atomic or list-like is depreciated and will be removed before the end of the year. This was done to avoid a namespace clash with the zoo package (#127).

Bug Fixes

  • For reasons of efficiency, most statistical and transformation functions used the C macro SHALLOW_DUPLICATE_ATTRIB to copy column attributes in a data frame. Since this macro does not copy S4 object bits, it caused some problems with S4 object columns such as POSIXct (e.g. computing lags/leads, first and last values on these columns). This is now fixed, all statistical functions (apart from fvar and fsd) now use DUPLICATE_ATTRIB and thus preserve S4 object columns (#91).

  • unlist2d produced a subsetting error if an empty list was present in the list-tree. This is now fixed, empty or NULL elements in the list-tree are simply ignored (#99).

Additions

  • A function fsummarise was added to facilitate translating dplyr / data.table code to collapse. Like collap, it is only very fast when used with the Fast Statistical Functions.

  • A function t_list is made available to efficiently transpose lists of lists.

Improvements

  • C files are compiled -O3 on Windows, which gives a boost of around 20% for the grouping mechanism applied to character data.

collapse version 1.5.1

12 Jan 09:41
d185640
Compare
Choose a tag to compare

A small patch for 1.5.0 that:

  • Fixes a numeric precision issue when grouping doubles (e.g. before qF(wlddev$LIFEEX) gave an error, now it works).

  • Fixes a minor issue with fHDwithin when applied to pseries and fill = FALSE.

collapse version 1.5.0

04 Jan 19:35
86440e5
Compare
Choose a tag to compare

collapse 1.5.0, released early January 2021, presents important refinements and some additional functionality.

Back to CRAN

  • I apologize for inconveniences caused by the temporal archival of collapse from December 19, 2020. This archival was caused by the archival of the important lfe package on the 4th of December. collapse depended on lfe for higher-dimensional centering, providing the fHDbetween / fHDwithin functions for generalized linear projecting / partialling out. To remedy the damage caused by the removal of lfe, I had to rewrite fHDbetween / fHDwithin to take advantage of the demeaning algorithm provided by fixest, which has some quite different mechanics. Beforehand, I made some significant changes to fixest::demean itself to make this integration happen. The CRAN deadline was the 18th of December, and I realized too late that I would not make this. A request to CRAN for extension was declined, so collapse got archived on the 19th. I have learned from this experience, and collapse is now sufficiently insulated that it will not be taken off CRAN even if all suggested packages were removed from CRAN.

Bug Fixes

  • Segfaults in several Fast Statistical Functions when passed numeric(0) are fixed (thanks to @eshom and @acylam, #101). The default behavior is that all collapse functions return numeric(0) again, except for fNobs, fNdistinct which return 0L, and fvar, fsd which return NA_real_.

Changes to Functionality

  • Functions fHDwithin / HDW and fHDbetween / HDB have been reworked, delivering higher performance and greater functionality: For higher-dimensional centering and heterogenous slopes, the demean function from the fixest package is imported (conditional on the availability of that package). The linear prediction and partialling out functionality is now built around flm and also allows for weights and different fitting methods.

  • In collap, the default behavior of give.names = "auto" was altered when used together with the custom argument. Before the function name was always added to the column names. Now it is only added if a column is aggregated with two different functions. I apologize if this breaks any code dependent on the new names, but this behavior just better reflects most common use (applying only one function per column), as well as STATA's collapse.

  • For list processing functions like get_elem, has_elem etc. the default for the argument DF.as.list was changed from TRUE to FALSE. This means if a nested lists contains data frame's, these data frame's will not be searched for matching elements. This default also reflects the more common usage of these functions (extracting entire data frame's or computed quantities from nested lists rather than searching / subsetting lists of data frame's). The change also delivers a considerable performance gain.

  • Vignettes were outsourced to the website, and also made available as PDF versions for download there. This nearly halves the size of the source package, and should induce users to appreciate the built-in documentation. The website also makes for much more convenient reading and navigation of these book-style vignettes.

Additions

  • Added a set of 10 operators %rr%, %r+%, %r-%, %r*%, %r/%, %cr%, %c+%, %c-%, %c*%, %c/% to facilitate and speed up row- and column-wise arithmetic operations involving a vector and a matrix / data frame / list. For example X %r*% v efficiently multiplies every row of X with v. Note that more advanced functionality is already provided in TRA(), dapply() and the Fast Statistical Functions, but these operators are intuitive and very convenient to use in matrix or matrix-style code, or in piped expressions.

  • Added function missing_cases (opposite of complete.cases and faster for data frame's / lists).

  • Added function allNA for atomic vectors.

  • New vignette about using collapse together with data.table, available online.

Improvements

  • Time series functions and operators flag / L / F, fdiff / D / Dlog and fgrowth / G now natively support irregular time series and panels, and feature a 'complete approach' i.e. values are shifted around taking full account of the underlying time-dimension!
  • Functions pwcor and pwcov can now compute weighted correlations on the pairwise or complete observations, supported by C-code that is (conditionally) imported from the weights package.

  • fFtest now also supports weights.

  • collap now provides an easy workaround to aggregate some columns using weights and others without. The user may simply append the names of Fast Statistical Functions with _uw to disable weights. Example: collapse::collap(mtcars, ~ cyl, custom = list(fmean_uw = 3:4, fmean = 8:10), w = ~ wt) aggregates columns 3 through 4 using a simple mean and columns 8 through 10 using the weighted mean.

  • The parallelism in collap using parallel::mclapply has been reworked to operate at the column-level, and not at the function level as before. It is still not available for Windows though. The default number of cores was set to mc.cores = 2L, which now gives an error on windows if parallel = TRUE.

  • function recode_char now has additional options ignore.case and fixed (passed to grepl), for enhanced recoding character data based on regular expressions.

  • rapply2d now has classes argument permitting more flexible use.

  • na_rm and some other internal functions were rewritten in C. na_rm is now 2x faster than x[!is.na(x)] with missing values and 10x faster without missing values.

collapse version 1.4.2

10 Nov 14:52
8a66c25
Compare
Choose a tag to compare

collapse 1.4.2, released mid November 2020, presents some important refinements, particularly in the domain of attribute handling, as well as some additional functionality. The changes make collapse smarter, more broadly compatible and more secure, and should not break existing code.

Changes to Functionality

  • Deep Matrix Dispatch / Extended Time Series Support: The default methods of all statistical and transformation functions dispatch to the matrix method if is.matrix(x) && !inherits(x, "matrix") evaluates to TRUE. This specification avoids invoking the default method on classed matrix-based objects (such as multivariate time series of the xts / zoo class) not inheriting a 'matrix' class, while still allowing the user to manually call the default method on matrices (objects with implicit or explicit 'matrix' class). The change implies that collapse's generic statistical functions are now well suited to transform xts / zoo and many other time series and matrix-based classes.

  • Fully Non-Destructive Piped Workflow: fgroup_by(x, ...) now only adds a class grouped_df, not classes table_df, tbl, grouped_df, and preserves all classes of x. This implies that workflows such as x %>% fgroup_by(...) %>% fmean etc. yields an object xAG of the same class and attributes as x, not a tibble as before. collapse aims to be as broadly compatible, class-agnostic and attribute preserving as possible.

  • Thorough and Controlled Object Conversions: Quick conversion functions qDF, qDT and qM now have additional arguments keep.attr and class providing precise user control over object conversions in terms of classes and other attributes assigned / maintained. The default (keep.attr = FALSE) yields hard conversions removing all but essential attributes from the object. E.g. before qM(EuStockMarkets) would just have returned EuStockMarkets (because is.matrix(EuStockMarkets) is TRUE) whereas now the time series class and 'tsp' attribute are removed. qM(EuStockMarkets, keep.attr = TRUE) returns EuStockMarkets as before.
  • Smarter Attribute Handling: Drawing on the guidance given in the R Internals manual, the following standards for optimal non-destructive attribute handling are formalized and communicated to the user:

    • The default and matrix methods of the Fast Statistical Functions preserve attributes of the input in grouped aggregations ('names', 'dim' and 'dimnames' are suitably modified). If inputs are classed objects (e.g. factors, time series, checked by is.object), the class and other attributes are dropped. Simple (non-grouped) aggregations of vectors and matrices do not preserve attributes, unless drop = FALSE in the matrix method. An exemption is made in the default methods of functions ffirst, flast and fmode, which always preserve the attributes (as the input could well be a factor or date variable).

    • The data frame methods are unaltered: All attributes of the data frame and columns in the data frame are preserved unless the computation result from each column is a scalar (not computing by groups) and drop = TRUE (the default).

    • Transformations with functions like flag, fwithin, fscale etc. are also unaltered: All attributes of the input are preserved in the output (regardless of whether the input is a vector, matrix, data.frame or related classed object). The same holds for transformation options modifying the input ("-", "-+", "/", "+", "*", "%%", "-%%") when using TRA() function or the TRA = "..." argument to the Fast Statistical Functions.

    • For TRA 'replace' and 'replace_fill' options, the data type of the STATS is preserved, not of x. This provides better results particularly with functions like fNobs and fNdistinct. E.g. previously fNobs(letters, TRA = "replace") would have returned the observation counts coerced to character, because letters is character. Now the result is integer typed. For attribute handling this means that the attributes of x are preserved unless x is a classed object and the data types of x and STATS do not match. An exemption to this rule is made if x is a factor and an integer (non-factor) replacement is offered to STATS. In that case the attributes of x are copied exempting the 'class' and 'levels' attribute, e.g. so that fNobs(iris$Species, TRA = "replace") gives an integer vector, not a (malformed) factor. In the unlikely event that STATS is a classed object, the attributes of STATS are preserved and the attributes of x discarded.

  • Reduced Dependency Burden: The dependency on the lfe package was made optional. Functions fHDwithin / fHDbetween can only perform higher-dimensional centering if lfe is available. Linear prediction and centering with a single factor (among a list of covariates) is still possible without installing lfe. This change means that collapse now only depends on base R and Rcpp and is supported down to R version 2.10.

Additions

  • Added function rsplit for efficient (recursive) splitting of vectors and data frames.

  • Added function fdroplevels for very fast missing level removal + added argument drop to qF and GRP.factor, the default is drop = FALSE. The addition of fdroplevels also enhances the speed of the fFtest function.

  • fgrowth supports annualizing / compounding growth rates through added power argument.

  • A function flm was added for barebones (weighted) linear regression fitting using different efficient methods: 4 from base R (.lm.fit, solve, qr, chol), using fastLm from RcppArmadillo (if installed), or fastLm from RcppEigen (if installed).

  • Added function qTBL to quickly convert R objects to tibble.

  • helpers setAttrib, copyAttrib and copyMostAttrib exported for fast attribute handling in R (similar to attributes<-(), these functions return a shallow copy of the first argument with the set of attributes replaced, but do not perform checks for attribute validity like attributes<-(). This can yield large performance gains with big objects).

  • helper cinv added wrapping the expression chol2inv(chol(x)) (efficient inverse of a symmetric, positive definite matrix via Choleski factorization).

  • A shortcut gby is now available to abbreviate the frequently used fgroup_by function.

  • Adds a method [.GRP_df that allows robust subsetting of grouped objects created with fgroup_by (thanks to Patrice Kiener for flagging this).

  • A print method for grouped data frames of any class was added.

Improvements

  • Faster internal methods for factors for funique, fmode and fNdistinct.
  • The grouped_df methods for flag, fdiff, fgrowth now also support multiple time variables to identify a panel e.g. data %>% fgroup_by(region, person_id) %>% flag(1:2, list(month, day)).

  • More security features for fsubset.data.frame / ss, ss is now internal generic and also supports subsetting matrices.

  • In some functions (like na_omit), passing double values (e.g. 1 instead of integer 1L) or negative indices to the cols argument produced an error or unexpected behavior. This is now fixed in all functions.

  • Fixed a bug in helper function all_obj_equal occurring if objects are not all equal.

  • Some performance improvements through increased use of pointers and C API functions.

  • Some documentation updates by Kevin Tappe.

collapse version 1.3.2

14 Sep 10:28
ff3b05f
Compare
Choose a tag to compare

collapse 1.3.2, released mid September 2020, is a minor update:

  • Fixed a small bug in fNdistinct for grouped distinct value counts on logical vectors.

  • Additional security for ftransform, which now efficiently checks the names of the data and replacement arguments for uniqueness, and also allows computing and transforming list-columns.

  • Added function ftransformv to facilitate transforming selected columns with function - a very efficient replacement for dplyr::mutate_if and dplyr::mutate_at.

  • frename now allows additional arguments to be passed to a renaming function.

collapse version 1.3.1

27 Aug 13:26
101418f
Compare
Choose a tag to compare

collapse 1.3.1, released end of August 2020, is a minor patch for 1.3.0:

  • Adjusted unit tests that fail on certain operating systems (mostly because of numeric precision issues). This update contains no changes to code or functionality.

collapse version 1.3.0

10 Aug 09:35
142b701
Compare
Choose a tag to compare

collapse 1.3.0, released mid August 2020, is another major update:

Changes to Functionality

  • dapply and BY now drop all unnecessary attributes if return = "matrix" or return = "data.frame" are explicitly requested (the default return = "same" still seeks to preserve the input data structure).

  • unlist2d now saves integer rownames if row.names = TRUE and a list of matrices without rownames is passed, and id.factor = TRUE generates a normal factor not an ordered factor. It is however possible to write id.factor = "ordered" to get an ordered factor id.

  • fdiff argument logdiff renamed to log, and taking logs is now done in R (reduces size of C++ code and does not generate as many NaN's). logdiff may still be used, but it may be deactivated in the future. Also in the matrix and data.frame methods for flag, fdiff and fgrowth, columns are only stub-renamed if more than one lag/difference/growth rate is computed.

Additions

  • Added fnth for fast (grouped, weighted) n'th element/quantile computations.

  • Added roworder(v) and colorder(v) for fast row and column reordering.

  • Added frename and setrename for fast and flexible renaming (by reference).

  • Added function fungroup, as replacement for dplyr::ungroup, intended for use with fgroup_by.

  • The shortcut gvr was created for get_vars(..., regex = TRUE). Also a helper .c was introduced for non-standard concatenation (i.e. .c(a, b) == c("a", "b")).

Improvements

  • fmedian now supports weights, computing a decently fast (grouped) weighted median based on radix ordering.

  • fmode now has the option to compute min and max mode, the default is still simply the first mode.

  • fwithin now supports quasi-demeaning (added argument theta) and can thus be used to manually estimate random-effects models.

  • fmode and fNdistinct have become a bit faster.

  • fgroup_by now preserves data.table's.

  • funique is now generic with a default vector and data.frame method, providing fast unique values and rows of data. The default was changed to sort = FALSE.

  • ftransform now also supports a data.frame as replacement argument, which automatically replaces matching columns and adds unmatched ones. Also ftransform<- was created as a more formal replacement method for this feature.

  • collap columns selected through cols argument are returned in the order selected if keep.col.order = FALSE. Argument sort.row is depreciated, and replace by argument sort. In addition the decreasing and na.last arguments were added and handed down to GRP.default.

  • radixorder 'sorted' attribute is now always attached.

  • stats::D which is masked when collapse is attached, is now preserved through methods D.expression and D.call.

  • GRP option call = FALSE to omit a call to match.call -> minor performance improvement.

  • Several small performance improvements through rewriting some internal helper functions in C and reworking some R code.

  • Performance improvements for some helper functions, setRownames / setColnames, na_insert etc.

  • Increased scope of testing statistical functions. The functionality of the package is now secured by 7700 unit tests covering all central bits and pieces.

collapse version 1.2.1

31 May 21:58
a17ac90
Compare
Choose a tag to compare

collapse 1.2.1, released end of May 2020, is a patch for 1.2.0:

  • Minor fixes for 1.2.0 issues that prevented correct installation on Mac OS X and a vignette rebuilding error on solaris.

  • fmode.grouped_df with groups and weights now saves the sum of the weights instead of the max (this makes more sense as the max only applies if all elements are unique).