Skip to content

Releases: SebKrantz/collapse

collapse version 2.0.9

11 Jan 12:05
Compare
Choose a tag to compare
  • Added functions na_locf() and na_focb() for fast basic C implementations of these procedures (optionally by reference). replace_na() now also has a type argument which supports options "locf" and "focb" (default "const"), similar to data.table::nafill. The implementation also supports character data and list-columns (NULL/empty elements). Thanks @BenoitLondon for suggesting (#489). I note that na_locf() exists in some other packages (such as imputeTS) where it is implemented in R and has additional options. Users should utilize the flexible namespace i.e. set_collapse(remove = "na_locf") to deal with this.

  • Fixed a bug in weighted quantile estimation (fquantile()) that could lead to wrong/out-of-range estimates in some cases. Thanks @zander-prinsloo for reporting (#523).

  • Improved right join such that join column names of x instead of y are preserved. This is more consistent with the other joins when join columns in x and y have different names.

  • More fluent and safe interplay of 'mask' and 'remove' options in set_collapse(): it is now seamlessly possible to switch from any combination of 'mask' and 'remove' to any other combination without the need of setting them to NULL first.

collapse version 2.0.8

01 Jan 18:40
Compare
Choose a tag to compare
  • In pivot(..., values = [multiple columns], labels = "new_labels_column", how = "wieder"), if the columns selected through values already have variable labels, they are concatenated with the new labels provided through "new_labels_col" using " - " as a separator (similar to names where the separator is "_").

  • whichv() and operators %==%, %!=% now properly account for missing double values, e.g. c(NA_real_, 1) %==% c(NA_real_, 1) yields c(1, 2) rather than 2. Thanks @eutwt for flagging this (#518).

  • In setv(X, v, R), if the type of R is greater than X e.g. setv(1:10, 1:3, 9.5), then a warning is issued that conversion of R to the lower type (real to integer in this case) may incur loss of information. Thanks @tony-aw for suggesting (#498).

  • frange() has an option finite = FALSE, like base::range. Thanks @MLopez-Ibanez for suggesting (#511).

  • varying.pdata.frame(..., any_group = FALSE) now unindexes the result (as should be the case).

collapse version 2.0.7

07 Dec 11:09
fb5253c
Compare
Choose a tag to compare
  • Fixed bug in full join if verbose = 0. Thanks @zander-prinsloo for reporting.

  • Added argument multiple = FALSE to join(). Setting multiple = TRUE performs a multiple-matching join where a row in x is matched to all matching rows in y. The default FALSE just takes the first matching row in y.

  • Improved recode/replace functions. Notably, replace_outliers() now supports option value = "clip" to replace outliers with the respective upper/lower bounds, and also has option single.limit = "mad" which removes outliers exceeding a certain number of median absolute deviations. Furthermore, all functions now have a set argument which fully applies the transformations by reference.

  • Functions replace_NA and replace_Inf were renamed to replace_na and replace_inf to make the namespace a bit more consistent. The earlier versions remain available.

collapse version 2.0.6

12 Nov 19:22
1a05eaf
Compare
Choose a tag to compare
  • Fixed a serious bug in qsu() where higher order weighted statistics were erroneous, i.e. whenever qsu(x, ..., w = weights, higher = TRUE) was invoked, the 'SD', 'Skew' and 'Kurt' columns were wrong (if higher = FALSE the weighted 'SD' is correct). The reason is that there appears to be no straightforward generalization of Welford's Online Algorithm to higher-order weighted statistics. This was not detected earlier because the algorithm was only tested with unit weights. The fix involved replacing Welford's Algorithm for the higher-order weighted case by a 2-pass method, that additionally uses long doubles for higher-order terms. Thanks @randrescastaneda for reporting.

  • Fixed some unexpected behavior in t_list() where names 'V1', 'V2', etc. were assigned to unnamed inner lists. It now preserves the missing names. Thanks @orgadish for flagging this.

collapse version 2.0.5

03 Nov 10:45
47a7974
Compare
Choose a tag to compare
  • In join, the if y is an expression e.g. join(x = mtcars, y = subset(mtcars, mpg > 20)), then its name is not extracted but just set to "y". Before, the name of y would be captured as as.character(substitute(y))[1] = "subset" in this case. This is an improvement mainly for display purposes, but could also affect code if there are duplicate columns in both datasets and suffix was not provided in the join call: before, y-columns would be renamed using a (non-sensible) "_subset" suffix, but now using a "_y" suffix. Note that this only concerns cases where y is an expression rather than a single object.

  • Small performance improvements to %[!]in% operators: %!in% now uses is.na(fmatch(x, table)) rather than fmatch(x, table, 0L) == 0L, and %in%, if exported using set_collapse(mask = "%in%"|"special"|"all") is as.logical(fmatch(x, table, 0L)) instead of fmatch(x, table, 0L) > 0L. The latter are faster because comparison operators >, == with integers additionally need to check for NA's (= the smallest integer in C).

collapse version 2.0.4

31 Oct 13:01
Compare
Choose a tag to compare
  • In fnth()/fquantile(), there has been a slight change to the weighted quantile algorithm. As outlined in the documentation, this algorithm gives weighted versions for all continuous quantile methods (type 7-9) in R by replacing sample quantities with their weighted counterparts. E.g., for the default quantile type 7, the continuous (lower) target element is (n - 1) * p. In the weighted algorithm, this became (sum(w) - mean(w)) * p and was compared to the cumulative sum of ordered (by x) weights, to preserve equivalence of the algorithms in cases where the weights are all equal. However, upon a second thought, the use of mean(w) does not really reflect a standard interpretation of the weights as frequencies. I have reasoned that using min(w) instead of mean(w) better reflects such an interpretation, as the minimum (non-zero) weight reflects the size of the smallest sampled unit. So the weighted quantile type 7 target is now (sum(w) - min(w)) * p, and also the other methods have been adjusted accordingly (note that zero weight observations are ignored in the algorithm).

  • This is more a Note than a change to the package: there is an issue with vctrs that users can encounter using collapse together with the tidyverse (especially ggplot2), which is that collapse internally optimizes computations on factors by giving them an additional "na.included" class if they are known to not contain any missing values. For example pivot(mtcars) gives a "variable" factor which has class c("factor", "na.included"), such that grouping on "variable" in subsequent operations is faster. Unfortunately, pivot(mtcars) |> ggplot(aes(y = value)) + geom_histogram() + facet_wrap( ~ variable) currently gives an error produced by vctrs, because vctrs does not implement a standard S3 method dispatch and thus does not ignore the "na.included" class. It turns out that the only way for me to deal with this is would be to swap the order of classes i.e. c("na.included", "factor"), import vctrs, and implement vec_ptype2 and vec_cast methods for "na.included" objects. This will never happen, as collapse is and will remain independent of the tidyverse. There are two ways you can deal with this: The first way is to remove the "na.included" class for ggplot2 e.g. facet_wrap( ~ set_class(variable, "factor")) or
    facet_wrap( ~ factor(variable)) will both work. The second option is to define a function vec_ptype2.factor.factor <- function(x, y, ...) x in your global environment, which avoids vctrs performing extra checks on factor objects.

collapse version 2.0.3

17 Oct 02:06
27d3ef1
Compare
Choose a tag to compare
  • Fixed a signed integer overflow inside a hash function detected by CRAN checks (changing to unsigned int).

  • Updated the cheatsheet (see README.md).

collapse version 2.0.2

14 Oct 02:11
ecd7935
Compare
Choose a tag to compare
  • Added global option 'stub' (default TRUE) to set_collapse. It is passed to the stub(s) arguments of the statistical operators, B, W, STD, HDW, HDW, L, D, Dlog, G (in .OPERATOR_FUN). By default these operators add a prefix/stub to matrix or data.frame columns transformed by them. Setting set_collapse(stub = FALSE) now allows to switch off this behavior such that columns are not prepended with a prefix by default.

  • roworder[v]() now also supports grouped data frames, but prints a message indicating that this is inefficient (also for indexed data). An additional argument verbose can be set to 0 to avoid such messages.

collapse version 2.0.1

12 Oct 16:20
0f1f5a2
Compare
Choose a tag to compare
  • %in% with set_collapse(mask = "%in%") does not warn about overidentification when used with data frames.

  • Fixed several typos in the documentation.

collapse version 2.0.0

11 Oct 23:21
93ce22f
Compare
Choose a tag to compare

collapse 2.0, released in Mid-October 2023, introduces fast table joins and data reshaping capabilities alongside other convenience functions, and enhances the packages global configurability, including interactive namespace control.

Potentially breaking changes

  • In a grouped setting, if .data is used inside fsummarise() and fmutate(), and .cols = NULL, .data will contain all columns except for grouping columns (in-line with the .SD syntax of data.table). Before, .data contained all columns. The selection in .cols still refers to all columns, thus it is still possible to select all columns using e.g. grouped_data %>% fsummarise(some_expression_involving(.data), .cols = seq_col(.)).

Other changes

  • In qsu(), argument vlabels was renamed to labels. But vlabels will continue to work.

Bug Fixes

  • Fixed a bug in the integer methods of fsum(), fmean() and fprod() that returned NA if and only if there was a single integer followed by NA's e.g fsum(c(1L, NA, NA)) erroneously gave NA. This was caused by a C-level shortcut that returned NA when the first element of the vector had been reached (moving from back to front) without encountering any non-NA-values. The bug consisted in the content of the first element not being evaluated in this case. Note that this bug did not occur with real numbers, and also not in grouped execution. Thanks @blset for reporting (#432).

Additions

  • Added join(): class-agnostic, vectorized, and (default) verbose joins for R, modeled after the polars API. Two different join algorithms are implemented: a hash-join (default, if sort = FALSE) and a sort-merge-join (if sort = TRUE).

  • Added pivot(): fast and easy data reshaping! It supports longer, wider and recast pivoting, including handling of variable labels, through a uniform and parsimonious API. It does not perform data aggregation, and by default does not check if the data is uniquely identified by the supplied ids. Underidentification for 'wide' and 'recast' pivots results in the last value being taken within each group. Users can toggle a duplicates check by setting check.dups = TRUE.

  • Added rowbind(): a fast class-agnostic alternative to rbind.data.frame() and data.table::rbindlist().

  • Added fmatch(): a fast match() function for vectors and data frames/lists. It is the workhorse function of join(), and also benefits ckmatch(), %!in%, and new operators %iin% and %!iin% (see below). It is also possible to set_collapse(mask = "%in%") to replace base::"%in%" using fmatch(). Thanks to fmatch(), these operators also all support data frames/lists of vectors, which are compared row-wise.

  • Added operators %iin% and %!iin%: these directly return indices, i.e. %[!]iin% is equivalent to which(x %[!]in% table). This is useful especially for subsetting where directly supplying indices is more efficient e.g. x[x %[!]iin% table] is faster than x[x %[!]in% table]. Similarly fsubset(wlddev, iso3c %iin% c("DEU", "ITA", "FRA")) is very fast.

  • Added vec(): efficiently turn matrices or data frames / lists into a single atomic vector. I am aware of multiple implementations in other packages, which are mostly inefficient. With atomic objects, vec() simply removes the attributes without copying the object, and with lists it directly calls C_pivot_longer.

Improvements

  • set_collapse() now supports options 'mask' and 'remove', giving collapse a flexible namespace in the broadest sense that can be changed at any point within the active session:

    • 'mask' supports base R or dplyr functions that can be masked into the faster collapse versions. E.g. library(collapse); set_collapse(mask = "unique") (or, equivalently, set_collapse(mask = "funique")) will create unique <- funique in the collapse namespace, export unique() from the namespace, and detach and attach the namespace again so R can find it. The re-attaching also ensures that collapse comes right after the global environment, implying that all it's functions will take priority over other libraries. Users can use fastverse::fastverse_conflicts() to check which functions are masked after using set_collapse(mask = ...). The option can be changed at any time. Using set_collapse(mask = NULL) removes all masked functions from the namespace, and can also be called simply to ensure collapse is at the top of the search path.

    • 'remove' allows removing arbitrary functions from the collapse namespace. E.g. set_collapse(remove = "D") will remove the difference operator D(), which also exists in stats to calculate symbolic and algorithmic derivatives (this is a convenient example but not necessary since collapse::D is S3 generic and will call stats::D() on R calls, expressions or names). This is safe to do as it only modifies which objects are exported from the namespace (it does not truly remove objects from the namespace). This option can also be changed at any time. set_collapse(remove = NULL) will restore the exported namespace.

    For both options there exist a number of convenient keywords to bulk-mask / remove functions. For example set_collapse(mask = "manip", remove = "shorthand") will mask all data manipulation functions such as mutate <- fmutate and remove all function shorthands such as mtt (i.e. abbreviations for frequently used functions that collapse supplies for faster coding / prototyping).

  • set_collapse() also supports options 'digits', 'verbose' and 'stable.algo', enhancing the global configurability of collapse.

  • qM() now also has a row.names.col argument in the second position allowing generation of rownames when converting data frame-like objects to matrix e.g. qM(iris, "Species") or qM(GGDC10S, 1:5) (interaction of id's).

  • as_factor_GRP() and finteraction() now have an argument sep = "." denoting the separator used for compound factor labels.

  • alloc() now has an additional argument simplify = TRUE. FALSE always returns list output.

  • frename() supports both new = old (pandas, used to far) and old = new (dplyr) style renaming conventions.

  • across() supports negative indices, also in grouped settings: these will select all variables apart from grouping variables.

  • TRA() allows shorthands "NA" for "replace_NA" and "fill" for "replace_fill".

  • group() experienced a minor speedup with >= 2 vectors as the first two vectors are now hashed jointly.

  • fquantile() with names = TRUE adds up to 1 digit after the comma in the percent-names, e.g. fquantile(airmiles, probs = 0.001) generates appropriate names (not 0% as in the previous version).