Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: cache plan for fft #41

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion src/NeuralOperators.jl
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@ module NeuralOperators
using ArgCheck: @argcheck
using ChainRulesCore: @non_differentiable
using ConcreteStructs: @concrete
using FFTW: FFTW, irfft, rfft
using FFTW: FFTW, plan_rfft, plan_irfft
using Random: Random, AbstractRNG
using Static: StaticBool, False, True, known, static

Expand Down
23 changes: 17 additions & 6 deletions src/layers.jl
Original file line number Diff line number Diff line change
Expand Up @@ -48,6 +48,14 @@ function LuxCore.initialparameters(rng::AbstractRNG, layer::OperatorConv)
rng, eltype(layer.tform), out_chs, in_chs, layer.prod_modes))
end

function LuxCore.initialstates(::AbstractRNG, layer::OperatorConv)
fake_x = zeros(Float32, ntuple(Returns(1), ndims(layer.tform))..., 1)
plan_tform = plan_transform(layer.tform, fake_x, nothing)
x = transform(layer.tform, fake_x, plan_tform)
plan_inv_tform = plan_inverse(layer.tform, x, nothing, size(x))
return (; plan_tform, plan_inv_tform)
end

function LuxCore.parameterlength(layer::OperatorConv)
return layer.prod_modes * layer.in_chs * layer.out_chs
end
Expand All @@ -59,27 +67,30 @@ function OperatorConv(
end

function (conv::OperatorConv{True})(x::AbstractArray, ps, st)
return operator_conv(x, conv.tform, ps.weight), st
return operator_conv(x, conv.tform, ps.weight, st)
end

function (conv::OperatorConv{False})(x::AbstractArray, ps, st)
N = ndims(conv.tform)
xᵀ = permutedims(x, (ntuple(i -> i + 1, N)..., 1, N + 2))
yᵀ = operator_conv(xᵀ, conv.tform, ps.weight)
yᵀ, stₙ = operator_conv(xᵀ, conv.tform, ps.weight, st)
y = permutedims(yᵀ, (N + 1, 1:N..., N + 2))
return y, st
return y, stₙ
end

function operator_conv(x, tform::AbstractTransform, weights)
x_t = transform(tform, x)
function operator_conv(x, tform::AbstractTransform, weights, st)
plan_tform = plan_transform(tform, x, st.plan_tform)
x_t = transform(tform, x, plan_tform)

x_tr = truncate_modes(tform, x_t)
x_p = apply_pattern(x_tr, weights)

pad_dims = size(x_t)[1:(end - 2)] .- size(x_p)[1:(end - 2)]
x_padded = NNlib.pad_constant(x_p, expand_pad_dims(pad_dims), false;
dims=ntuple(identity, ndims(x_p) - 2))::typeof(x_p)

return inverse(tform, x_padded, size(x))
plan_inv_tform = plan_inverse(tform, x_padded, st.plan_inv_tform, size(x))
return inverse(tform, x_padded, plan_inv_tform, size(x)), (; plan_tform, plan_inv_tform)
end

"""
Expand Down
49 changes: 43 additions & 6 deletions src/transform.jl
Original file line number Diff line number Diff line change
Expand Up @@ -4,10 +4,22 @@
## Interface

- `Base.ndims(<:AbstractTransform)`: N dims of modes
- `transform(<:AbstractTransform, x::AbstractArray)`: Apply the transform to x
- `truncate_modes(<:AbstractTransform, x_transformed::AbstractArray)`: Truncate modes
that contribute to the noise
- `inverse(<:AbstractTransform, x_transformed::AbstractArray)`: Apply the inverse

### Transform Interface

- `plan_transform(<:AbstractTransform, x::AbstractArray, prev_plan)`: Construct a plan to
apply the transform to x. Might reuse the previous plan if possible
- `transform(<:AbstractTransform, x::AbstractArray, plan)`: Apply the transform to x using
the plan

### Inverse Transform Interface

- `plan_inverse(<:AbstractTransform, x_transformed::AbstractArray, prev_plan, M)`:
Construct a plan to apply the inverse transform to `x_transformed`. Might reuse the
previous plan if possible
- `inverse(<:AbstractTransform, x_transformed::AbstractArray, plan, M)`: Apply the inverse
transform to `x_transformed`
"""
abstract type AbstractTransform{T} end
Expand All @@ -22,15 +34,40 @@ end

Base.ndims(T::FourierTransform) = length(T.modes)

transform(ft::FourierTransform, x::AbstractArray) = rfft(x, 1:ndims(ft))
function plan_transform(ft::FourierTransform, x::AbstractArray, ::Nothing)
return plan_rfft(x, 1:ndims(ft))
end

function plan_transform(ft::FourierTransform, x::AbstractArray, prev_plan)
size(prev_plan) == size(x) && eltype(prev_plan) == eltype(x) && return prev_plan
return plan_transform(ft, x, nothing)
end

@non_differentiable plan_transform(::Any...)

transform(::FourierTransform, x::AbstractArray, plan) = plan * x

function low_pass(ft::FourierTransform, x_fft::AbstractArray)
return view(x_fft, map(d -> 1:d, ft.modes)..., :, :)
end

truncate_modes(ft::FourierTransform, x_fft::AbstractArray) = low_pass(ft, x_fft)

function inverse(
ft::FourierTransform, x_fft::AbstractArray{T, N}, M::NTuple{N, Int64}) where {T, N}
return real(irfft(x_fft, first(M), 1:ndims(ft)))
function plan_inverse(ft::FourierTransform, x_transformed::AbstractArray{T, N},
::Nothing, M::NTuple{N, Int64}) where {T, N}
return plan_irfft(x_transformed, first(M), 1:ndims(ft))
end

function plan_inverse(ft::FourierTransform, x_transformed::AbstractArray{T, N},
prev_plan, M::NTuple{N, Int64}) where {T, N}
size(prev_plan) == size(x_transformed) && eltype(prev_plan) == eltype(x_transformed) &&
return prev_plan
return plan_inverse(ft, x_transformed, nothing, M)
end

@non_differentiable plan_inverse(::Any...)

function inverse(::FourierTransform, x_transformed::AbstractArray{T, N}, plan,
::NTuple{N, Int64}) where {T, N}
return real(plan * x_transformed)
end
Loading