-
-
Notifications
You must be signed in to change notification settings - Fork 32
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Issue with ForwardDiff.jl #111
Comments
On what versions does this return a NaN? I see some errors instead: julia> using ForwardDiff, ExponentialUtilities, FiniteDifferences
julia> FiniteDifferences.grad(central_fdm(7, 1), x -> sum(sin, exp(x)), [1 2; 3 4.0])[1]
2×2 Matrix{Float64}:
55.4447 123.025
82.7871 182.245
julia> FiniteDifferences.grad(central_fdm(7, 1), x -> sum(sin, ExponentialUtilities.exponential!(x, ExpMethodGeneric())), [1 2; 3 4.0])[1]
2×2 Matrix{Float64}:
55.4447 123.025
82.7871 182.245
julia> ForwardDiff.gradient(x -> sum(sin, ExponentialUtilities.exponential!(x, ExpMethodGeneric())), [1 2; 3 4.0])
2×2 Matrix{Float64}:
55.4447 123.025
82.7871 182.245 Now with julia> FiniteDifferences.grad(central_fdm(7, 1), x -> sum(sin, exp(x)), zeros(2,2))[1]
2×2 Matrix{Float64}:
0.540302 1.0
1.0 0.540302
julia> ForwardDiff.gradient(x -> sum(sin, ExponentialUtilities.exponential!(x, ExpMethodGeneric())), zeros(2,2))
ERROR: ArgumentError: matrix contains Infs or NaNs
Stacktrace:
[1] chkfinite
@ ~/.julia/dev/julia/usr/share/julia/stdlib/v1.10/LinearAlgebra/src/lapack.jl:86 [inlined]
[2] generic_lufact!(A::Matrix{Dual{ForwardDiff.Tag{var"#63#64", Float64}, Float64, 4}}, pivot::RowMaximum; check::Bool)
@ LinearAlgebra ~/.julia/dev/julia/usr/share/julia/stdlib/v1.10/LinearAlgebra/src/lu.jl:135
[3] generic_lufact!
@ ~/.julia/dev/julia/usr/share/julia/stdlib/v1.10/LinearAlgebra/src/lu.jl:133 [inlined]
[4] #lu!#174
@ ~/.julia/dev/julia/usr/share/julia/stdlib/v1.10/LinearAlgebra/src/lu.jl:131 [inlined]
[5] lu! (repeats 2 times)
@ ~/.julia/dev/julia/usr/share/julia/stdlib/v1.10/LinearAlgebra/src/lu.jl:131 [inlined]
[6] _rdiv!
@ ~/.julia/packages/ExponentialUtilities/Jn8Ch/src/exp_generic.jl:188 [inlined]
[7] exp_generic_core!(y1::Matrix{Dual{ForwardDiff.Tag{var"#63#64", Float64}, Float64, 4}}, y2::Matrix{Dual{ForwardDiff.Tag{var"#63#64", Float64}, Float64, 4}}, y3::Matrix{Dual{ForwardDiff.Tag{var"#63#64", Float64}, Float64, 4}}, x::Matrix{Dual{ForwardDiff.Tag{var"#63#64", Float64}, Float64, 4}}, #unused#::Val{13})
@ ExponentialUtilities ~/.julia/packages/ExponentialUtilities/Jn8Ch/src/exp_generic.jl:197
[8] exp_generic!(y1::Matrix{Dual{ForwardDiff.Tag{var"#63#64", Float64}, Float64, 4}}, y2::Matrix{Dual{ForwardDiff.Tag{var"#63#64", Float64}, Float64, 4}}, y3::Matrix{Dual{ForwardDiff.Tag{var"#63#64", Float64}, Float64, 4}}, x::Matrix{Dual{ForwardDiff.Tag{var"#63#64", Float64}, Float64, 4}}, s::Int64, #unused#::Val{13})
@ ExponentialUtilities ~/.julia/packages/ExponentialUtilities/Jn8Ch/src/exp_generic.jl:172
[9] exp_generic_mutable(x::Matrix{Dual{ForwardDiff.Tag{var"#63#64", Float64}, Float64, 4}}, s::Int64, #unused#::Val{13})
@ ExponentialUtilities ~/.julia/packages/ExponentialUtilities/Jn8Ch/src/exp_generic.jl:168
[10] exponential!(x::Matrix{Dual{ForwardDiff.Tag{var"#63#64", Float64}, Float64, 4}}, method::ExpMethodGeneric{Val{13}()}, cache::Nothing)
@ ExponentialUtilities ~/.julia/packages/ExponentialUtilities/Jn8Ch/src/exp_generic.jl:138
[11] exponential!
@ ~/.julia/packages/ExponentialUtilities/Jn8Ch/src/exp_generic.jl:130 [inlined]
[12] #63
@ ./REPL[54]:1 [inlined]
[13] vector_mode_dual_eval!
@ ~/.julia/packages/ForwardDiff/eqMFf/src/apiutils.jl:37 [inlined]
[14] vector_mode_gradient(f::var"#63#64", x::Matrix{Float64}, cfg::ForwardDiff.GradientConfig{ForwardDiff.Tag{var"#63#64", Float64}, Float64, 4, Matrix{Dual{ForwardDiff.Tag{var"#63#64", Float64}, Float64, 4}}})
@ ForwardDiff ~/.julia/packages/ForwardDiff/eqMFf/src/gradient.jl:106
[15] gradient(f::Function, x::Matrix{Float64}, cfg::ForwardDiff.GradientConfig{ForwardDiff.Tag{var"#63#64", Float64}, Float64, 4, Matrix{Dual{ForwardDiff.Tag{var"#63#64", Float64}, Float64, 4}}}, ::Val{true})
@ ForwardDiff ~/.julia/packages/ForwardDiff/eqMFf/src/gradient.jl:0
[16] gradient(f::Function, x::Matrix{Float64}, cfg::ForwardDiff.GradientConfig{ForwardDiff.Tag{var"#63#64", Float64}, Float64, 4, Matrix{Dual{ForwardDiff.Tag{var"#63#64", Float64}, Float64, 4}}})
@ ForwardDiff ~/.julia/packages/ForwardDiff/eqMFf/src/gradient.jl:17
[17] gradient(f::Function, x::Matrix{Float64})
@ ForwardDiff ~/.julia/packages/ForwardDiff/eqMFf/src/gradient.jl:17
# same error from example above, does not return NaN
julia> ForwardDiff.derivative(2.0) do x
h = fill(zero(typeof(x)), (2, 2))
F = ExponentialUtilities.exponential!(im * h, ExpMethodGeneric())
return sum(F) # note that this is complex, and indep of x
end
ERROR: ArgumentError: matrix contains Infs or NaNs
Stacktrace:
[1] chkfinite(A::Matrix{Complex{ForwardDiff.Dual{ForwardDiff.Tag{var"#19#20", Float64}, Float64, 1}}})
@ LinearAlgebra.LAPACK ~/.julia/dev/julia/usr/share/julia/stdlib/v1.10/LinearAlgebra/src/lapack.jl:86
[2] generic_lufact!(A::Matrix{Complex{ForwardDiff.Dual{ForwardDiff.Tag{var"#19#20", Float64}, Float64, 1}}}, pivot::RowMaximum; check::Bool)
julia> lu([1 2; 3 4.0]) |> typeof
LU{Float64, Matrix{Float64}, Vector{Int64}}
# this does not go to /LinearAlgebra/src/lu.jl:131
julia> lu(zeros(2,2))
ERROR: SingularException(1)
Stacktrace:
[1] checknonsingular
@ ~/.julia/dev/julia/usr/share/julia/stdlib/v1.10/LinearAlgebra/src/factorization.jl:19 [inlined]
[2] checknonsingular
@ ~/.julia/dev/julia/usr/share/julia/stdlib/v1.10/LinearAlgebra/src/factorization.jl:22 [inlined]
[3] #lu!#170
@ ~/.julia/dev/julia/usr/share/julia/stdlib/v1.10/LinearAlgebra/src/lu.jl:82 [inlined]
[4] lu!
@ ~/.julia/dev/julia/usr/share/julia/stdlib/v1.10/LinearAlgebra/src/lu.jl:80 [inlined]
[5] #lu#176
@ ~/.julia/dev/julia/usr/share/julia/stdlib/v1.10/LinearAlgebra/src/lu.jl:299 [inlined]
[6] lu
@ ~/.julia/dev/julia/usr/share/julia/stdlib/v1.10/LinearAlgebra/src/lu.jl:298 [inlined]
[7] lu(A::Matrix{Float64})
@ LinearAlgebra ~/.julia/dev/julia/usr/share/julia/stdlib/v1.10/LinearAlgebra/src/lu.jl:298
(jl_kR2r1x) pkg> st
Status `/private/var/folders/yq/4p2zwd614y59gszh7y9ypyhh0000gn/T/jl_kR2r1x/Project.toml`
[d4d017d3] ExponentialUtilities v1.22.0
[26cc04aa] FiniteDifferences v0.12.25
[f6369f11] ForwardDiff v0.10.33 With older ForwardDiff, two error cases above run: julia> ForwardDiff.gradient(x -> sum(sin, ExponentialUtilities.exponential!(x, ExpMethodGeneric())), zeros(2,2))
2×2 Matrix{Float64}:
0.540302 1.0
1.0 0.540302
julia> ForwardDiff.derivative(2.0) do x # nothing depends on x
h = fill(zero(typeof(x)), (2, 2))
F = ExponentialUtilities.exponential!(im * h, ExpMethodGeneric())
return @show sum(F) # result is complex
end
sum(F) = Dual{ForwardDiff.Tag{var"#15#16", Float64}}(2.0,0.0) + Dual{ForwardDiff.Tag{var"#15#16", Float64}}(-0.0,0.0)*im
0.0 + 0.0im
(jl_x4ENQb) pkg> st
Status `/private/var/folders/yq/4p2zwd614y59gszh7y9ypyhh0000gn/T/jl_x4ENQb/Project.toml`
[d4d017d3] ExponentialUtilities v1.22.0
⌃ [f6369f11] ForwardDiff v0.10.32 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
We're having difficulties using the latest patch release of
ForwardDiff.jl
in the following situation:is returning a NaN.
The text was updated successfully, but these errors were encountered: