Use google BERT to do CoNLL-2003 NER !
Train model using Python and TensorFlow 2.0
python3
pip3 install -r requirements.txt
-
bert-base-cased unzip into
bert-base-cased
-
bert-large-cased unzip into
bert-large-cased
code for pre-trained bert from tensorflow-offical-models
python run_ner.py --data_dir=data/ --bert_model=bert-base-cased --output_dir=out_base --max_seq_length=128 --do_train --num_train_epochs 3 --do_eval --eval_on dev
python run_ner.py --data_dir=data/ --bert_model=bert-large-cased --output_dir=out_large --max_seq_length=128 --do_train --num_train_epochs 3 --multi_gpu --gpus 0,1,2,3 --do_eval --eval_on test
precision recall f1-score support
PER 0.9677 0.9756 0.9716 1842
LOC 0.9671 0.9592 0.9631 1837
MISC 0.8872 0.9132 0.9001 922
ORG 0.9191 0.9314 0.9252 1341
avg / total 0.9440 0.9509 0.9474 5942
precision recall f1-score support
ORG 0.8773 0.9037 0.8903 1661
PER 0.9646 0.9592 0.9619 1617
MISC 0.7691 0.8305 0.7986 702
LOC 0.9333 0.9305 0.9319 1668
avg / total 0.9053 0.9184 0.9117 5648
Pretrained model download from here
precision recall f1-score support
ORG 0.9290 0.9374 0.9332 1341
MISC 0.8967 0.9230 0.9097 922
PER 0.9713 0.9734 0.9723 1842
LOC 0.9748 0.9701 0.9724 1837
avg / total 0.9513 0.9564 0.9538 5942
precision recall f1-score support
LOC 0.9256 0.9329 0.9292 1668
MISC 0.7891 0.8419 0.8146 702
PER 0.9647 0.9623 0.9635 1617
ORG 0.8903 0.9133 0.9016 1661
avg / total 0.9094 0.9242 0.9167 5648
Pretrained model download from here
from bert import Ner
model = Ner("out_base/")
output = model.predict("Steve went to Paris")
print(output)
'''
[
{
"confidence": 0.9981840252876282,
"tag": "B-PER",
"word": "Steve"
},
{
"confidence": 0.9998939037322998,
"tag": "O",
"word": "went"
},
{
"confidence": 0.999891996383667,
"tag": "O",
"word": "to"
},
{
"confidence": 0.9991968274116516,
"tag": "B-LOC",
"word": "Paris"
}
]
'''
BERT NER model deployed as rest api
python api.py
API will be live at 0.0.0.0:8000
endpoint predict
curl -X POST http://0.0.0.0:8000/predict -H 'Content-Type: application/json' -d '{ "text": "Steve went to Paris" }'
Output
{
"result": [
{
"confidence": 0.9981840252876282,
"tag": "B-PER",
"word": "Steve"
},
{
"confidence": 0.9998939037322998,
"tag": "O",
"word": "went"
},
{
"confidence": 0.999891996383667,
"tag": "O",
"word": "to"
},
{
"confidence": 0.9991968274116516,
"tag": "B-LOC",
"word": "Paris"
}
]
}