GDPuc (a.k.a. the GDP unit-converter) provides a simple function to convert GDP time-series data from one unit to another.
To note: The default conversion parameters are from the World Bank’s World Development Indicators (WDI) database (see link). The current parameters are from October 2021, with the next update planned for October 2022.
# Install from CRAN
install.packages("GDPuc")
# Or the development version from GitHub
remotes::install_github("pik-piam/GDPuc")
Load the package.
library(GDPuc)
The main function of the package is convertGDP
.
convertGDP(
gdp = my_gdp,
unit_in = "constant 2005 LCU",
unit_out = "constant 2017 Int$PPP"
)
Here, the gdp
argument takes a tibble or a data-frame that contains,
at least:
- a column with iso3c country codes, (ideally named “iso3c”),
- a column with the year, (ideally named “year”),
- a column named “value”, with the gdp data.
The unit_in
and unit_out
arguments specify the incoming and outgoing
GDP units. All common GDP units are supported, i.e.:
- current LCU
- current US$MER
- current Int$PPP
- constant YYYY LCU
- constant YYYY US$MER
- constant YYYY Int$PPP
Here “YYYY” is a placeholder for a year, e.g. “2010” or “2015”, and “LCU” stands for Local Currency Unit.
library(GDPuc)
my_gdp <- tibble::tibble(
iso3c = "USA",
year = 2010:2014,
value = 100:104
)
print(my_gdp)
#> # A tibble: 5 × 3
#> iso3c year value
#> <chr> <int> <int>
#> 1 USA 2010 100
#> 2 USA 2011 101
#> 3 USA 2012 102
#> 4 USA 2013 103
#> 5 USA 2014 104
convertGDP(
gdp = my_gdp,
unit_in = "constant 2005 LCU",
unit_out = "constant 2017 Int$PPP"
)
#> # A tibble: 5 × 3
#> iso3c year value
#> <chr> <int> <dbl>
#> 1 USA 2010 123.
#> 2 USA 2011 124.
#> 3 USA 2012 126.
#> 4 USA 2013 127.
#> 5 USA 2014 128.
convertGDP
has other arguments that allow you to:
-
choose conversion factors (see “Choosing conversion factors”)
-
print out information on the conversion process and/or return the conversion factors used (see “Getting information on the conversion process”)
-
handle missing conversion factors (see “Handling missing conversion factors”)
-
convert regional GDP data (see “Converting regional GDP data”)