Skip to content

Commit

Permalink
Merge pull request #532 from RWTH-EBC/development
Browse files Browse the repository at this point in the history
Release v0.6.0
  • Loading branch information
mlauster authored Sep 7, 2018
2 parents f21780e + 5578bd3 commit d80174c
Show file tree
Hide file tree
Showing 189 changed files with 76,294 additions and 17,129 deletions.
3 changes: 1 addition & 2 deletions .coveragerc
Original file line number Diff line number Diff line change
@@ -1,5 +1,4 @@
[run]
omit =
# omit everything in gui and example packages
# omit everything in example packages
teaser/examples/*
teaser/gui/*
1 change: 1 addition & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -37,6 +37,7 @@
.cache/
__pycache__/
.coverage
.pytest_cache

#pip install #
#####################
Expand Down
19 changes: 13 additions & 6 deletions .travis.yml
Original file line number Diff line number Diff line change
Expand Up @@ -3,13 +3,20 @@ python:
- 2.7
- 3.4
- 3.5
- 3.6
install:
- pip install --upgrade pip setuptools wheel
- pip install --only-binary=numpy,scipy numpy scipy
- pip install pyxb
- pip install -e .
- pip install pytest-cov
- pip install coveralls
- pip install --upgrade pip setuptools wheel
- pip install --only-binary=numpy,scipy numpy scipy
- pip install pyxb
- pip install -e .
- pip install pytest-cov
- pip install coveralls
- pip install PyGithub==1.39
- pip install flake8==3.4.1

before_script:
- flake8 --count --ignore W503,F401 --exclude teaser/data/bindings,doc,tests --max-line-length=120

script:
- py.test --cov=teaser
after_success:
Expand Down
27 changes: 17 additions & 10 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -8,10 +8,17 @@

TEASER (Tool for Energy Analysis and Simulation for Efficient Retrofit) allows
fast generation of archetype buildings with low input requirements and the
export of individual dynamic simulation models for Modelica libraries [AixLib](https://github.com/RWTH-EBC/AixLib) and
[Modelica IBPSA library](https://github.com/ibpsa/modelica). It is being
developed at the [RWTH Aachen University, E.ON Energy Research Center, Institute
for Energy Efficient Buildings and Indoor Climate](https://www.ebc.eonerc.rwth-aachen.de/cms/~dmzz/E-ON-ERC-EBC/?lidx=1).
export of individual dynamic simulation models for the below-mentioned Modelica
libraries. These libraries all use the framework of [Modelica IBPSA
library](https://github.com/ibpsa/modelica). TEASER is being developed at the
[RWTH Aachen University, E.ON Energy Research Center, Institute for Energy
Efficient Buildings and Indoor
Climate](https://www.ebc.eonerc.rwth-aachen.de/cms/~dmzz/E-ON-ERC-EBC/?lidx=1).

* [AixLib](https://github.com/RWTH-EBC/AixLib)
* [Buildings](https://github.com/lbl-srg/modelica-buildings)
* [BuildingSystems](https://github.com/UdK-VPT/BuildingSystems)
* [IDEAS](https://github.com/open-ideas/IDEAS).

The full documentation of TEASER including examples and description of modules,
classes and functions can be found at the website:
Expand Down Expand Up @@ -51,23 +58,23 @@ time consuming and error-prone. To enable the use of BPS on urban scale we
present the TEASER tool, an open framework for urban energy modeling of
building stocks. TEASER provides an easy interface for multiple data sources,
data enrichment (where necessary) and export of ready-to-run Modelica simulation
models for [AixLib](https://github.com/RWTH-EBC/AixLib) and
models for all libraries supporting the
[Modelica IBPSA library](https://github.com/ibpsa/modelica).


## Version

TEASER is a ongoing research project, the current version is 0.5.5, which is
TEASER is a ongoing research project, the current version is 0.6.0, which is
still a pre-release.

## How to use TEASER

### Dependencies

TEASER uses Python 2.7 <= v >=3.3. Further using a Python distribution is
recommended as they already contain (or easily support installation of) many
Python packages (e.g. SciPy, NumPy, pip, PyQT, etc.) that are used in the
TEASER code. Two examples of those distributions are:
TEASER is tested against Python versions 2.7, 3.4, 3.5 and 3.6. Further
using a Python distribution is recommended as they already contain (or easily
support installation of) many Python packages (e.g. SciPy, NumPy, pip, PyQT,
etc.) that are used in the TEASER code. Two examples of those distributions are:

1. https://winpython.github.io/ WinPython comes along with a lot of Python
packages (e.g. SciPy, NumPy, pip, PyQT, etc.)..
Expand Down
186 changes: 176 additions & 10 deletions doc/Literatur.bib
Original file line number Diff line number Diff line change
Expand Up @@ -116,15 +116,6 @@ @ARTICLE{Hillebrand.2012
number = {4}
}

@MISC{Kaag.March2008,
author = {Kaag, W. and Ummenh{\"o}fer, T. and Fisch, M. N.},
title = {{Forschungsprojekt energieeffiziente Sanierung von B{\"u}rogeb{\"a}uden
der 50er bis 70er Jahre - Erarbeitung einer Planungshilfe}},
year = {2008},
address = {Braunschweig},
editor = {ProSAB},
keywords = {Archetypes;mehr info}
}

@BOOK{Lichtme.2010,
title = {Vereinfachungen f{\"u}r die energetische Bewertung von Geb{\"a}uden},
Expand All @@ -151,7 +142,7 @@ @BOOK{KurzverfahrenIWU
year = {2005},
editor = {Fraunhofer IRB Verlag},
author = {Tobias Loga and Nikolaus Diefenbach and Jens Knissel and Rolf Born},
volume = {Bauforschung für die Praxis},
volume = {Bauforschung f{\"u}r die Praxis},
number = {72},
pages = {160},
timestamp = {2016.01.13}
Expand All @@ -178,3 +169,178 @@ @MISC{Abschlussbericht
address = {Aachen},
editor = {RWTH}
}

@phdthesis{Lauster.2018,
author = {Lauster, Moritz},
year = {2018},
title = {{Parametrierbare Geb{\"a}udemodelle für dynamische Energiebedarfsrechnungen von Stadtquartieren}},
address = {Aachen},
publisher = {E.ON Energy Research Center},
school = {{RWTH Aachen University}}
}

@book{Liebchen.2007,
editor = {Liebchen, Jens H. and Viering, Markus G. and Zanner, Christian},
year = {2007},
title = {{Baumanagement und Bau{\"o}konomie: Aktuelle Entwicklungen}},
address = {Wiesbaden},
publisher = {{B.G. Teubner Verlag / GWV Fachverlage GmbH Wiesbaden}},
isbn = {978-3-8351-0152-4},
series = {{Leitfaden des Baubetriebs und der Bauwirtschaft}},
abstract = {Die hier vorgestellte Methodik {\"a}ndert die Herangehensweise bei der Erstellung von Ausf- rungsterminpl{\"a}nen. In einem ersten Schritt werden technologische Abh{\"a}ngigkeiten betrachtet. Diese werden jedoch nicht direkt durch den Menschen vorgegeben, sie werden auf der Gru- lage der Beschreibung eines jeden Vorgangs nach Regeln der Relationenalgebra ausgerechnet. Der Bearbeiter muss in einem ersten Schritt das Bauwerk zerlegen in Bauteile und alle V- g{\"a}nge so durcharbeiten, dass f{\"u}r jeden Vorgang seine Voraussetzungen und seine Ergebnisse spezifiziert sind. Voraussetzungen und Ergebnisse sind Bauteil},
url = {http://dx.doi.org/10.1007/978-3-8351-9091-7}
}

@misc{DeutschesInstitutfurNormung.2016,
year = {2016},
title = {{Energetische Bewertung von Geb{\"a}uden - Berechnung des Nutz-, End- und Prim{\"a}renergiebedarfs f{\"u}r Heizung, K{\"u}hlung, L{\"u}ftung, Trinkwarmwasser und Beleuchtung - Teil 10: Nutzungsrandbedingungen, Klimadaten}},
address = {Berlin},
volume = {91.120.10},
number = {DIN V 18599-10},
publisher = {{Beuth Verlag}},
type = {Vornorm},
month = {Oktober},
key = {DIN V 18599-10}
}


@misc{DeutschesInstitutfurNormung.2016b,
year = {2016},
title = {{Energetische Bewertung von Geb{\"a}uden - Berechnung des Nutz-, End- und Prim{\"a}renergiebedarfs f{\"u}r Heizung, K{\"u}hlung, L{\"u}ftung, Trinkwarmwasser und Beleuchtung - Teil 3: Nutzenergiebedarf f{\"u}r die energetische Luftaufbereitung}},
address = {Berlin},
number = {DIN~V 18599-3},
publisher = {{Beuth Verlag}},
type = {Vornorm},
month = {Oktober},
key = {DIN V 18599-3}
}

@booklet{Kaag.March2008,
author = {Kaag, W. and Ummenh{\"o}fer, T. and Fisch, M. N.},
year = {2008},
title = {{Forschungsprojekt {\dq}energieeffiziente Sanierung von B{\"u}rogeb{\"a}uden der 50er bis 70er Jahre - Erarbeitung einer Planungshilfe{\dq}}},
address = {Braunschweig},
editor = {ProSAB}
}

@book{Hegger.2014,
editor = {Hegger, Manfred and Dettmar, J{\"o}rg},
year = {2014},
title = {{Energetische Stadtraumtypen: Strukturelle und energetische Kennwerte von Stadtr{\"a}umen}},
address = {Stuttgart},
publisher = {{Fraunhofer IRB Verlag}},
isbn = {978-3816792925}
}

@inproceedings{Lauster.2016,
author = {Lauster, Moritz and Mans, Michael and Remmen, Peter and Fuchs, Marcus and M{\"u}ller, Dirk},
title = {{Scalable Design-Driven Parameterization of Reduced Order Models using Archetype Buildings with TEASER}},
pages = {535--542},
booktitle = {{BauSIM 2016: Sixth German-Austrian IBPSA Conference}},
year = {2016},
address = {Dresden},
date = {14.-16. September}
}

@misc{VereinDeutscherIngenieure.2015c,
year = {2015},
title = {{Berechnung der thermischen Lasten und Raumtemperaturen (Auslegung K{\"u}hllast und Jahressimulation)}},
address = {D{\"u}sseldorf},
volume = {91.140.30},
number = {VDI 2078},
publisher = {{Beuth Verlag}},
type = {Richtlinie},
month = {Juni},
key = {VDI 2078}
}

@book{Davies.2004,
author = {Davies, Morris G.},
year = {2004},
title = {{Building Heat Transfer}},
address = {Hoboken, NJ},
publisher = {{John Wiley {\&} Sons}},
isbn = {978-0-470-84731-2},
abstract = {A third or more of the energy consumption of industrialized countries is expended on creating acceptable thermal and lighting conditions in buildings. As a result, building heat transfer is keenly important to the design of buildings, and the resulting analytical theory forms the basis of most design procedures. Analytical Theory of Building Heat Transfer is the first comprehensive reference of its kind, a one-volume compilation of current findings on heat transfer relating to the thermal behavior of buildings, forming a logical basis for current design procedures.}
}

@book{DiLaura.2011,
author = {DiLaura, David},
year = {2011},
title = {{The lighting handbook: Reference and application}},
address = {New York, NY},
edition = {10. ed.},
publisher = {{Illuminating Engineering Society of North America}},
isbn = {978-0-87995-241-9},
institution = {{Illuminating Engineering Society of North America}}
}

@booklet{BundesministeriumfurVerkehrBauundStadtentwicklung.26.07.2007,
author = {{Bundesministerium f{\"u}r Verkehr, Bau und Stadtentwicklung}},
year = {2007},
title = {{Bekanntmachung der Regeln zur Datenaufnahme und Datenverwendung im Wohngeb{\"a}udebestand}},
address = {Berlin},
editor = {BMVBS}
}

@misc{VereinDeutscherIngenieure.2012b,
year = {2012},
title = {{Berechnung des instation{\"a}ren thermischen Verhaltens von R{\"a}umen und Geb{\"a}uden - Fenstermodell}},
address = {Berlin},
volume = {91.120.10},
number = {VDI 6007-2},
publisher = {{Beuth Verlag}},
type = {Richtlinie},
month = {M{\"a}rz},
key = {VDI 6007-2}
}

@book{Schramek.2009,
editor = {Schramek, Ernst-Rudolf and Recknagel, Hermann and Sprenger, Hermann},
year = {2009},
title = {{Taschenbuch f{\"u}r Heizung und Klimatechnik [09/10]: Einschlie{\ss}lich Warmwasser- und K{\"a}ltetechnik}},
address = {M{\"u}nchen},
edition = {74 Aufl.},
publisher = {{Oldenbourg Industrieverlag}},
isbn = {978-3-8356-3134-2}
}

@misc{DeutschesInstitutfurNormung.2007,
year = {2007},
title = {{L{\"u}ftung von Geb{\"a}uden - Berechnungsverfahren zur Bestimmung der Luftvolumenstr{\"o}me in Geb{\"a}uden einschlie{\ss}lich Infiltration}},
address = {Berlin},
volume = {91.140.30},
number = {DIN EN 15242},
publisher = {{Beuth Verlag}},
type = {Norm},
month = {September},
key = {DIN EN 15242}
}

@book{Lindeburg.2013,
author = {Lindeburg, Michael R.},
year = {2013},
title = {{Mechanical Engineering Reference Manual for the PE Exam}},
address = {Belmont, CA},
edition = {Thirteenth edition},
publisher = {{Professional Publications}},
isbn = {9781591264149}
}

@book{.20012001,
author = {Bosy, Bruno and Doschko, Werner and Helbig, Klaus},
year = {2001},
title = {{Zentralheizungs- und L{\"u}ftungsbau}},
address = {Bad Homburg vor der H{\"o}he},
publisher = {Gehlen},
isbn = {9783441921639}
}

@mastersthesis{Mehrfeld.2014,
type = {Masterarbeit},
author = {Mehrfeld, Philipp},
school = {Lehrstuhl f{\"u}r Geb{\"a}ude- und Raumklimatechnik, RWTH Aachen},
year = {2014},
title = {{Experimentelle Untersuchung von L{\"u}ftungstechnik in Laboren}},
address = {Aachen}
}
55 changes: 54 additions & 1 deletion doc/archetypes.rst
Original file line number Diff line number Diff line change
Expand Up @@ -168,6 +168,9 @@ net leased area is divided in the following thermal zone areas:
Residential
------------

IWU
----

SingleFamilyDwelling
--------------------

Expand All @@ -178,10 +181,60 @@ SingleFamilyDwelling

#. Living (100% of net leased area)

Tabula
-------

This is an archetype building for german single family house according to
TABULA building typology (http://webtool.building-typology.eu/#bm). As
TABULA defines one reference building, whereas TEASER wants to provide a
methodology to generate individual building information, this archetype
underlies some assumptions. The made assumptions are explained in the
following:

Each building has four orientations for outer walls and windows (north,
east, south and west), two orientations for rooftops (south and north), with
tilt of 35 degree and one orientation for ground floors and one door (
default
orientation is west). The area of each surface is calculated using the
product of the given net_leased_area and specific estimation factors. These
estimation factors where build by dividing the given 'surface area' by the
'reference floor area' in TABULA. The estimation factors are calculated for
each building period ('construction year class'). Please note that the
number and height of the floors given in TEASER does not have any effect on
the surface area for heat transmission, but is only used to calculate the
interior wall area, which is not specified in TABULA at all. Further, TABULA
does not specify any specific user profile, by default the SingleFamilyHouse
class has exactly one usage zone, which is 'Living'. TABULA also does not
always specify the exact construction of building elements, but always
provides a prescribed U-Value. We used the U-Value and the given material
information to determine thickness of each layer and implemented it into
elements XML ('teaser.data.input.inputdata.TypeElements_TABULA_DE.xml'). The
material properties have been taken from MASEA Material data base
(http://www.masea-ensan.de/). As there might be some differences in the
assumptions for material properties from TABULA and MASEA the U-Value might
not always be exactly the same as in TABULA but is always in an acceptable
range. The U-Value has been calculated using combined constant values for
interior and exterior heat transmission, we used a resistance of 0.17
(m2*K)/W for outer walls, windows, flat roofs and doors; 0.34 (m2*K)/W for
ground floors to unheated cellars and 0.17 (m2*K)/W to direct ground
coupled floors, 0.21 (m2*K)/W was taken for pitched roofs.

singlefamilyhouse
-----------------

apartmentblock
-----------------

multifamilyhouse
-----------------

terracedhouse
-----------------


Literature
-----------

.. bibliography:: Literatur.bib
:style: unsrt
:encoding: latex+latin
:encoding: latin
4 changes: 2 additions & 2 deletions doc/conf.py
Original file line number Diff line number Diff line change
Expand Up @@ -58,9 +58,9 @@
# built documents.
#
# The short X.Y version.
version = '0.5.'
version = '0.6.'
# The full version, including alpha/beta/rc tags.
release = '0.5.5'
release = '0.6.0'

# The language for content autogenerated by Sphinx. Refer to documentation
# for a list of supported languages.
Expand Down
8 changes: 8 additions & 0 deletions doc/development.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,8 @@
Issues solved in development
=============================

Issues that are solved and implemented in development, but not available in
master branch:

- Export for individual libraries instead of IBPSA library https://github.com/RWTH-EBC/TEASER/issues/440
- New FAQ section in the documentation https://github.com/RWTH-EBC/TEASER/issues/442
Loading

0 comments on commit d80174c

Please sign in to comment.