Skip to content
This repository has been archived by the owner on Jan 24, 2024. It is now read-only.

Add Op UnitTest for divide #1383

Merged
merged 9 commits into from
May 6, 2023
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
190 changes: 161 additions & 29 deletions python/tests/ops/test_divide_op.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,7 @@
import unittest
import numpy as np
from op_test import OpTest, OpTestTool
from op_test_helper import TestCaseHelper
import paddle
import paddle.nn.functional as F
import cinn
Expand All @@ -28,61 +29,192 @@
"x86 test will be skipped due to timeout.")
class TestDivOp(OpTest):
def setUp(self):
print(f"\nRunning {self.__class__.__name__}: {self.case}")
self.init_case()

def init_case(self):
self.inputs = {
"x": np.random.random([32]).astype("float32"),
"y": np.random.random([32]).astype("float32")
}
self.x_np = self.random(
shape=self.case["x_shape"],
dtype=self.case["x_dtype"],
low=-10,
high=10)
self.y_np = self.random(
shape=self.case["y_shape"],
dtype=self.case["y_dtype"],
low=1,
high=10)

def build_paddle_program(self, target):
x = paddle.to_tensor(self.inputs["x"], stop_gradient=True)
y = paddle.to_tensor(self.inputs["y"], stop_gradient=True)
x = paddle.to_tensor(self.x_np, stop_gradient=True)
y = paddle.to_tensor(self.y_np, stop_gradient=True)

out = paddle.divide(x, y)

self.paddle_outputs = [out]

def build_cinn_program(self, target):
builder = NetBuilder("div")
x = builder.create_input(Float(32), self.inputs["x"].shape, "x")
y = builder.create_input(Float(32), self.inputs["y"].shape, "y")
x = builder.create_input(
self.nptype2cinntype(self.case["x_dtype"]), self.case["x_shape"],
"x")
y = builder.create_input(
self.nptype2cinntype(self.case["y_dtype"]), self.case["y_shape"],
"y")
out = builder.divide(x, y)

prog = builder.build()
res = self.get_cinn_output(prog, target, [x, y],
[self.inputs["x"], self.inputs["y"]], [out])
[self.x_np, self.y_np], [out])

self.cinn_outputs = [res[0]]

def test_check_results(self):
self.check_outputs_and_grads()

max_relative_error = self.case[
"max_relative_error"] if "max_relative_error" in self.case else 1e-5
self.check_outputs_and_grads(max_relative_error=max_relative_error)


class TestDivAll(TestCaseHelper):
def init_attrs(self):
self.class_name = "TestDivOpCase"
self.cls = TestDivOp
self.inputs = [
{
"x_shape": [32],
"y_shape": [32],
},
{
"x_shape": [32, 64],
"y_shape": [32, 64],
},
{
"x_shape": [2, 3, 4],
"y_shape": [1, 5, 2],
},
{
"x_shape": [16, 8, 4, 2],
"y_shape": [16, 8, 4, 2],
},
{
"x_shape": [16, 8, 4, 2, 1],
"y_shape": [16, 8, 4, 2, 1],
},
]
self.dtypes = [
{
"x_dtype": "int32",
"y_dtype": "int32",
},
{
"x_dtype": "int64",
"y_dtype": "int64",
},
{
"x_dtype": "float32",
"y_dtype": "float32",
},
{
"x_dtype": "float64",
"y_dtype": "float64",
},
]
self.attrs = []


class TestDivNegOp(OpTest):
thisjiang marked this conversation as resolved.
Show resolved Hide resolved
def setUp(self):
print(f"\nRunning {self.__class__.__name__}: {self.case}")
self.init_case()

class TestDivCase1(TestDivOp):
def init_case(self):
self.inputs = {
"x": np.random.random([32, 64]).astype("float32"),
"y": np.random.random([32, 64]).astype("float32")
}
self.x_np = self.random(
shape=self.case["x_shape"],
dtype=self.case["x_dtype"],
low=-10,
high=10)
self.y_np = self.random(
shape=self.case["y_shape"],
dtype=self.case["y_dtype"],
low=-10,
high=-1)

def build_paddle_program(self, target):
x = paddle.to_tensor(self.x_np, stop_gradient=True)
y = paddle.to_tensor(self.y_np, stop_gradient=True)

class TestDivCase2(TestDivOp):
def init_case(self):
self.inputs = {
"x": np.random.random([2, 2, 32]).astype("float32"),
"y": np.random.random([32]).astype("float32")
}
out = paddle.divide(x, y)

self.paddle_outputs = [out]

class TestDivCase3(TestDivOp):
def init_case(self):
self.inputs = {
"x": np.random.random([2, 32]).astype("float32"),
"y": np.random.random([1]).astype("float32")
}
def build_cinn_program(self, target):
builder = NetBuilder("div")
x = builder.create_input(
self.nptype2cinntype(self.case["x_dtype"]), self.case["x_shape"],
"x")
y = builder.create_input(
self.nptype2cinntype(self.case["y_dtype"]), self.case["y_shape"],
"y")
out = builder.divide(x, y)

prog = builder.build()
res = self.get_cinn_output(prog, target, [x, y],
[self.x_np, self.y_np], [out])

self.cinn_outputs = [res[0]]

def test_check_results(self):
max_relative_error = self.case[
"max_relative_error"] if "max_relative_error" in self.case else 1e-5
self.check_outputs_and_grads(max_relative_error=max_relative_error)


class TestDivNegAll(TestCaseHelper):
def init_attrs(self):
self.class_name = "TestDivNegOpCase"
self.cls = TestDivNegOp
self.inputs = [
{
"x_shape": [32],
"y_shape": [32],
},
{
"x_shape": [32, 64],
"y_shape": [32, 64],
},
{
"x_shape": [2, 3, 4],
"y_shape": [1, 5, 2],
},
{
"x_shape": [16, 8, 4, 2],
"y_shape": [16, 8, 4, 2],
},
{
"x_shape": [16, 8, 4, 2, 1],
"y_shape": [16, 8, 4, 2, 1],
},
]
self.dtypes = [
{
"x_dtype": "int32",
"y_dtype": "int32",
},
{
"x_dtype": "int64",
"y_dtype": "int64",
},
{
"x_dtype": "float32",
"y_dtype": "float32",
},
{
"x_dtype": "float64",
"y_dtype": "float64",
},
]
self.attrs = []


if __name__ == "__main__":
unittest.main()
TestDivAll().run()
TestDivNegAll().run()