Skip to content
This repository has been archived by the owner on Jan 24, 2024. It is now read-only.

Add Op UnitTest for Cast #1381

Merged
merged 15 commits into from
May 6, 2023
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
123 changes: 91 additions & 32 deletions python/tests/ops/test_cast_op.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,7 @@
import unittest
import numpy as np
from op_test import OpTest, OpTestTool
from op_test_helper import TestCaseHelper
import paddle
import cinn
from cinn.frontend import *
Expand All @@ -27,15 +28,16 @@
"x86 test will be skipped due to timeout.")
class TestCastOp(OpTest):
def setUp(self):
self.init_case()
print(f"\nRunning {self.__class__.__name__}: {self.case}")
self.prepare_inputs()

def init_case(self):
self.inputs = {"x": self.random([10201, 50], "float32", 1, 10)}
self.dtype = "int64"
def prepare_inputs(self):
self.x_np = self.random(
shape=self.case["x_shape"], dtype=self.case["x_dtype"])

def build_paddle_program(self, target):
x = paddle.to_tensor(self.inputs["x"], stop_gradient=True)
out = paddle.cast(x, self.dtype)
x = paddle.to_tensor(self.x_np, stop_gradient=True)
out = paddle.cast(x, self.case["d_dtype"])

self.paddle_outputs = [out]

Expand All @@ -44,37 +46,94 @@ def build_paddle_program(self, target):
def build_cinn_program(self, target):
builder = NetBuilder("cast")
x = builder.create_input(
self.nptype2cinntype(self.inputs["x"].dtype),
self.inputs["x"].shape, "x")
out = builder.cast(x, self.dtype)
self.nptype2cinntype(self.case["x_dtype"]), self.case["x_shape"],
"x")
out = builder.cast(x, self.case["d_dtype"])

prog = builder.build()
res = self.get_cinn_output(prog, target, [x], [self.inputs["x"]],
[out])
res = self.get_cinn_output(prog, target, [x], [self.x_np], [out])

self.cinn_outputs = res
self.cinn_outputs = [res[0]]

def test_check_results(self):
self.check_outputs_and_grads(all_equal=True)


class TestCastCase1(TestCastOp):
def init_case(self):
self.inputs = {"x": self.random([10201, 50], "float32", 1, 10)}
self.dtype = "float32"


class TestCastCase2(TestCastOp):
def init_case(self):
self.inputs = {"x": self.random([32, 64], "int32", 1, 10)}
self.dtype = "uint8"


class TestCastCase3(TestCastOp):
def init_case(self):
self.inputs = {"x": self.random([32, 64], "uint8", 1, 10)}
self.dtype = "int32"
max_relative_error = self.case[
"max_relative_error"] if "max_relative_error" in self.case else 1e-5
self.check_outputs_and_grads(max_relative_error=max_relative_error)


class TestCastAll(TestCaseHelper):
def init_attrs(self):
self.class_name = "TestCastOpCase"
self.cls = TestCastOp
self.inputs = [
{
enkilee marked this conversation as resolved.
Show resolved Hide resolved
"x_shape": [1],
},
{
"x_shape": [1024],
},
{
"x_shape": [32, 64],
},
{
"x_shape": [16, 8, 4, 2],
},
]
self.dtypes = [
{
"x_dtype": "bool",
},
{
"x_dtype": "int8",
},
{
"x_dtype": "int16"
},
{
"x_dtype": "int32",
},
{
"x_dtype": "int64"
},
{
"x_dtype": "float16",
"max_relative_error": 1e-3
},
{
"x_dtype": "float32",
},
{
"x_dtype": "float64",
},
]
self.attrs = [
{
"d_dtype": "bool",
},
{
"d_dtype": "int8",
},
{
"d_dtype": "int16"
},
{
"d_dtype": "int32",
},
{
"d_dtype": "int64"
},
{
"d_dtype": "float16",
"max_relative_error": 1e-3
},
{
"d_dtype": "float32",
},
{
"d_dtype": "float64",
},
]


if __name__ == "__main__":
unittest.main()
TestCastAll().run()