Skip to content

This repository is the official implementation of Cryptocurrency Price Forecasting using Variational AutoEncoder with Versatile Quantile Modeling (CIKM, 2024).

License

Notifications You must be signed in to change notification settings

Optim-Lab/CryptoVAE

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Cryptocurrency Price Forecasting using Variational AutoEncoder with Versatile Quantile Modeling

This repository is the official implementation of Cryptocurrency Price Forecasting using Variational AutoEncoder with Versatile Quantile Modeling (CIKM, 2024).

NOTE: This repository supports WandB MLOps platform!

project homepage: https://crypto-vae.streamlit.app/

Training & Evaluation

1. Training Proposed Method

python main.py --model <model>
  • <model> options: GLD_finite, GLD_infinite, LSQF, ExpLog
  • detailed configuration files can be found in configs folder

2. Training Benchmark Methods

python main.py --model 'TLAE'
python main.py --model 'ProTran'
python benchmarks/deepar.py 
python benchmarks/gp_copula.py 
python benchmarks/mqrnn.py 
python benchmarks/sqf_rnn.py 
python benchmarks/tft.py
python benchmarks/benchmark_eval.py --model 'TFT' --tau 1
  • detailed configuration files can be found in configs folder for TLAE and ProTran
  • pretrained weights for DeepAR, GP-copula, MQRNN, SQF-RNN, TFT can be found in /assets folder

codes for evaluation

  • step-by-step evaluation for our proposed method: infernce.py
  • step-by-step evaluation for benchmark methods: benchmarks/benchmark_eval.py

Directory and Codes

.
+-- assets (includes visualization results and pretrained weights of benchmark methods)
+-- benchmarks (includes codes for training benchmark methods)
+-- config (includes detailed configuration files)
+-- module 
+-- inference.py
+-- main.py
+-- LICENSE
+-- README.md

Citation


About

This repository is the official implementation of Cryptocurrency Price Forecasting using Variational AutoEncoder with Versatile Quantile Modeling (CIKM, 2024).

Topics

Resources

License

Stars

Watchers

Forks

Languages