Skip to content

Prometheus metrics exporter for Python RQ (Redis Queue)

License

Notifications You must be signed in to change notification settings

Onemind-Services-LLC/rq-exporter

 
 

Repository files navigation

Python RQ Prometheus Exporter

PyPI PyPI - Python Version Libraries.io dependency status for latest release Docker Image Size (latest semver)

Prometheus metrics exporter for Python RQ (Redis Queue) job queue library.

Grafana dashboard

Installation

Install the Python package:

$ # Install the latest version
$ pip install rq-exporter
$ # Or you can install a specific version
$ pip install rq-exporter==1.0.0

Or download the Docker image:

$ # Pull the latest image
$ docker pull mdawar/rq-exporter
$ # Or you can pull a specific version
$ docker pull mdawar/rq-exporter:v1.0.0

The releases are available as Docker image tags.

Usage

Python package:

$ # Start the exporter on port 9726
$ rq-exporter
$ # Start the exporter on a specific port and host (Default: 0.0.0.0:9726)
$ rq-exporter --host localhost --port 8080
$ # By default the exporter will connect to Redis on `localhost` port `6379`
$ # You can specify a Redis URL
$ rq-exporter --redis-url redis://:123456@redis_host:6379/0
$ # Or specific Redis options (host, port, db, password)
$ rq-exporter --redis-host 192.168.1.10 --redis-port 6380 --redis-pass 123456 --redis-db 1
$ # You can also specify a password file path (eg: mounted Docker secret)
$ rq-exporter --redis-pass-file /run/secrets/redis_pass

Docker image:

$ # Run the exporter and publish the port 9726 on the host
$ docker run -it -p 9726:9726 rq-exporter
$ # Use the -d option to run the container in the background (detached)
$ docker run -d -p 9726:9726 rq-exporter
$ # All the command line arguments will be passed to rq-exporter
$ docker run -it -p 9726:9726 rq-exporter --redis-host redis --redis-pass 123456
$ # You can also configure the exporter using environment variables
$ docker run -it -p 9726:9726 -e RQ_REDIS_HOST=redis -e RQ_REDIS_PASS=123456 rq-exporter

Grafana Dashboard

An example Grafana dashboard is available with the ID 12196 for showcasing this exporter's metrics.

You can also find the JSON file of the dashboard in this repository.

Note:

  • This is just an example dashboard, feel free to use it as a base for your custom dashboard
  • You need to adjust the color thresholds to suit your needs for the job status percentage singlestat panels
  • Some panels might seem duplicated providing percentages and current values, these are just for showcasing the PromQL queries

Exported Metrics

RQ metrics:

Metric Name Type Labels Description
rq_workers Gauge name, queues, state RQ workers
rq_jobs Gauge queue, status RQ jobs by queue and status
rq_workers_success_total Counter name, queues Successful job count by worker
rq_workers_failed_total Counter name, queues Failed job count by worker
rq_workers_working_time_total Counter name, queues Total working time in seconds by worker

Request processing metrics:

Metric Name Type Description
rq_request_processing_seconds_count Summary Number of times the RQ data were collected
rq_request_processing_seconds_sum Summary Total sum of time spent collecting RQ data
rq_request_processing_seconds_created Gauge Time created at (time.time() return value)

Example:

# HELP rq_request_processing_seconds Time spent collecting RQ data
# TYPE rq_request_processing_seconds summary
rq_request_processing_seconds_count 1.0
rq_request_processing_seconds_sum 0.029244607000009637
# TYPE rq_request_processing_seconds_created gauge
rq_request_processing_seconds_created 1.5878023726039658e+09
# HELP rq_workers RQ workers
# TYPE rq_workers gauge
rq_workers{name="40d33ed9541644d79373765e661b7f38", queues="default", state="idle"} 1.0
rq_workers{name="fe9a433575e04685a53e4794b2eaeea9", queues="high,default,low", state="busy"} 1.0
# HELP rq_jobs RQ jobs by state
# TYPE rq_jobs gauge
rq_jobs{queue="default", status="queued"} 2.0
rq_jobs{queue="default", status="started"} 1.0
rq_jobs{queue="default", status="finished"} 5.0
rq_jobs{queue="default", status="failed"} 1.0
rq_jobs{queue="default", status="deferred"} 1.0
rq_jobs{queue="default", status="scheduled"} 2.0

Configuration

You can configure the exporter using command line arguments or environment variables:

CLI Argument Env Variable Default Value Description
--host RQ_EXPORTER_HOST 0.0.0.0 Serve the exporter on this host
-p, --port RQ_EXPORTER_PORT 9726 Serve the exporter on this port
--redis-url RQ_REDIS_URL None Redis URL in the form redis://:[password]@[host]:[port]/[db]
--redis-host RQ_REDIS_HOST localhost Redis host name
--redis-port RQ_REDIS_PORT 6379 Redis port number
--redis-db RQ_REDIS_DB 0 Redis database number
--sentinel-host RQ_SENTINEL_HOST None Redis Sentinel host
--sentinel-port RQ_SENTINEL_PORT 26379 Redis Sentinel port
--sentinel-master RQ_SENTINEL_MASTER master Redis Sentinel master name
--redis-pass RQ_REDIS_PASS None Redis password
--redis-pass-file RQ_REDIS_PASS_FILE None Redis password file path (e.g. Path of a mounted Docker secret)
--worker-class RQ_WORKER_CLASS rq.Worker RQ worker class
--queue-class RQ_QUEUE_CLASS rq.Queue RQ queue class
--log-level RQ_EXPORTER_LOG_LEVEL INFO Logging level
--log-format RQ_EXPORTER_LOG_FORMAT [%(asctime)s] [%(name)s] [%(levelname)s]: %(message)s Logging handler format string
--log-datefmt RQ_EXPORTER_LOG_DATEFMT %Y-%m-%d %H:%M:%S Logging date/time format string

Note:

  • When Redis URL is set using --redis-url or RQ_REDIS_URL the other Redis options will be ignored
  • When the Redis password is set using --redis-pass-file or RQ_REDIS_PASS_FILE, then --redis-pass and RQ_REDIS_PASS will be ignored

Serving with Gunicorn

The WSGI application can be created using the rq_exporter.create_app() function:

$ gunicorn "rq_exporter:create_app()" -b 0.0.0.0:9726 --log-level info

Example Dockerfile to create a Docker image to serve the application with Gunicorn

FROM mdawar/rq-exporter:latest

USER root

RUN pip install --no-cache-dir gunicorn

USER exporter

ENTRYPOINT ["gunicorn", "rq_exporter:create_app()"]

CMD ["-b", "0.0.0.0:9726", "--threads", "2", "--log-level", "info", "--keep-alive", "3"]

Note about concurrency:

The exporter is going to work without any problems with multiple workers but you will get different values for these metrics:

  • rq_request_processing_seconds_count
  • rq_request_processing_seconds_sum
  • rq_request_processing_seconds_created

This is fine if you don't care about these metrics, these are only for measuring the count and time processing the RQ data, so the other RQ metrics are not going to be affected.

But you can still use multiple threads with 1 worker process to handle multiple concurrent requests:

$ gunicorn "rq_exporter:create_app()" -b 0.0.0.0:9726 --threads 2

Building the Docker Image

$ # Build the docker image and tag it rq-exporter:latest
$ docker build -t rq-exporter .

$ # M1 MacOs Build the docker image and tag it rq-exporter:latest
$ docker buildx build --platform linux/amd64 -t rq-exporter .

The image can also be built using docker-compose:

$ docker-compose build

Check out the docker-compose.yml file for usage example.

Development

To start a full development environment with RQ workers, Prometheus and Grafana:

$ docker-compose up
$ # If you want to start multiple workers use the --compatibility flag
$ # which will make docker-compose read the `deploy` section and start multiple replicas
$ docker-compose --compatibility up

You can access the services on these ports on your local machine:

  • RQ exporter: 9726
  • Redis: 6379
  • RQ Dashboard: 9181
  • Prometheus: 9090
  • Grafana: 3000 (Login using admin:admin)

You can specify the services that you want to start by their name in the docker-compose.yml file:

$ # Example starting only the `rq_exporter` and `redis` services
$ docker-compose up rq_exporter redis

To run more workers and enqueue more jobs you can scale the worker and enqueue services:

$ # Run 5 workers
$ docker-compose up -d --scale worker=5
$ # Enqueue more jobs
$ # Scale the enqueue service and the workers
$ docker-compose up -d --scale worker=5 --scale enqueue=2

To cleanup after development:

$ # Use -v to remove volumes
$ docker-compose down -v

You can also start another rq-exporter instance that collects stats from a project using custom RQ Worker and Queue classes:

$ # Using -f to pass multiple docker-compose files
$ # docker-compose.custom.yml defines services using custom RQ classes
$ docker-compose -f docker-compose.yml -f docker-compose.custom.yml up
$ # To cleanup you need to also pass the same files
$ docker-compose -f docker-compose.yml -f docker-compose.custom.yml down

A new RQ exporter instance will be exposed on port 9727 on your local machine.

Note: If you don't have docker-compose installed follow the installation instructions on the official website.

If you want to use the package manually:

$ # Clone the repository
$ git clone <REPO_URL>
$ # Change to the project directory
$ cd rq-exporter
$ # Create a new virtualenv
$ python -m venv /path/to/env
$ # Activate the environment
$ source /path/to/env/bin/activate
$ # Install the requirements
$ pip install -r requirements.txt
$ # Start the exporter on port 9726
$ python -m rq_exporter
$ # You can configure the exporter using command line arguments
$ python -m rq_exporter --port 8080

Running the Tests

$ python -m unittest

Contributing

  1. Fork the repository
  2. Clone the forked repository git clone <URL>
  3. Create a new feature branch git checkout -b <BRANCH_NAME>
  4. Make changes and add tests if needed and commit your changes git commit -am "Your commit message"
  5. Push the new branch to Github git push origin <BRANCH_NAME>
  6. Create a pull request

About

Prometheus metrics exporter for Python RQ (Redis Queue)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 98.9%
  • Dockerfile 1.1%