Skip to content
/ MATEY Public

Scalable open-source codebase for developing spatiotemporal foundation models for multiscale multiphysics systems

License

Notifications You must be signed in to change notification settings

ORNL/MATEY

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

105 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MATEY MATEY

MATEY is a scalable open-source framework for developing transformer-based spatiotemporal foundation models for physical systems. It supports both structured and unstructured scientific datasets, providing multiscale representations, and enables efficient training on HPC systems.

Installation

  • Option 1 - Frontier: a preconfigured Conda environment is available.
    • ROCM 6.3.1

    • Activate the environment:

      source /lustre/orion/world-shared/stf218/junqi/forge/matey-env-rocm631.sh
    • Example usage: ./examples/submit_JHTDB_demo.sh

  • Optional 2 - Create your own virtual env
    python3.9 -m venv ~/virtual/matey
    source ~/virtual/matey/bin/activate
    pip install -r requirements.txt

Running

Launching with Slurm

  • Use the example Slurm job scripts inside ./examples, e.g.,
    sbatch submit_batch.sh

Training MATEY on Your Own Dataset

Data loading

  • Add your data loading script under:

    ./matey/data_utils/<your_dataset_scripts>

    See references:

    • hdf5_3Ddatasets.py
    • thewell_datasets.py
    • netcdf_datasets.py
  • Register your dataset name in:

    ./matey/data_utils/dataset.py->DSET_NAME_TO_OBJECT.

  • Point your config file to the correct data directory

Model configuration

  • Define your model architectures and data configurations in <your_config_yaml_file>.

    See examples in ./examples/config/Demo_*.ymal.

Submitting jobs

  • Update <your_slurm_job_script> to include:

    export yaml_config=directory of <your_config_yaml_file>
  • Submit your job:

    sbatch <your_slurm_job_script>

Publications & Presentations

  • Hunor Csala, Sebastian De Pascuale, Paul Laiu, Jeremy Lore, Jae-Sun Park, Pei Zhang. Autoregressive long-horizon prediction of plasma edge dynamics. arXiv:2512.23884
  • Junqi Yin, Mijanur Palash, M. Paul Laiu, Muralikrishnan Gopalakrishnan Meena, John Gounley, Stephen M. de Bruyn Kops, Feiyi Wang, Ramanan Sankaran, Pei Zhang. Pixel-Resolved Long-Context Learning for Turbulence at Exascale: Resolving Small-scale Eddies Toward the Viscous Limit. arXiv:2507.16697
  • Pei Zhang, Paul Laiu, Matthew Norman, Doug Stefanski, and John Gounley. MATEY: multiscale adaptive foundation models for spatiotemporal physical systems. arXiv:2412.20601
  • Pei Zhang, Paul Laiu, Matthew Norman, Doug Stefanski, and John Gounley. MATEY: multiscale adaptive foundation models for spatiotemporal physical systems, NeurIPS 2024 Workshop on  Machine Learning and the Physical Sciences.

Contributors

This codebase was originally seeded (Jan 2024) from PolymathicAI/multiple _physics_pretraining (with the commit: 67ffa35). It has since been substantially rewritten and evolved independently, with ongoing development led by the following contributors.

Active Contributors

  • Hunor Csala, ORNL
  • Andrey Prokopenko, ORNL
  • Junqi Yin, ORNL
  • Murali Gopalakrishnan Meena, ORNL
  • John Gounley, ORNL
  • Paul Laiu, ORNL
  • Pei Zhang, ORNL

Previous Contributors

  • Mijanur R Palash, ORNL
  • Xiao Jing (Georgia Tech; 2025 Summer Intern)
  • Sheikh Md Shakeel Hassan Nln (University of California, Irvine; 2024 Summer Intern)
  • Joseph Quinn (Vanderbilt University; 2024 Summer Intern)

About

Scalable open-source codebase for developing spatiotemporal foundation models for multiscale multiphysics systems

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •