MATEY is a scalable open-source framework for developing transformer-based spatiotemporal foundation models for physical systems. It supports both structured and unstructured scientific datasets, providing multiscale representations, and enables efficient training on HPC systems.
- Option 1 - Frontier: a preconfigured Conda environment is available.
-
ROCM 6.3.1
-
Activate the environment:
source /lustre/orion/world-shared/stf218/junqi/forge/matey-env-rocm631.sh -
Example usage:
./examples/submit_JHTDB_demo.sh
-
- Optional 2 - Create your own virtual env
python3.9 -m venv ~/virtual/matey source ~/virtual/matey/bin/activate pip install -r requirements.txt
- Use the example Slurm job scripts inside
./examples, e.g.,sbatch submit_batch.sh
-
Add your data loading script under:
./matey/data_utils/<your_dataset_scripts>See references:
hdf5_3Ddatasets.pythewell_datasets.pynetcdf_datasets.py
-
Register your dataset name in:
./matey/data_utils/dataset.py->DSET_NAME_TO_OBJECT. -
Point your config file to the correct data directory
-
Define your model architectures and data configurations in <your_config_yaml_file>.
See examples in
./examples/config/Demo_*.ymal.
-
Update <your_slurm_job_script> to include:
export yaml_config=directory of <your_config_yaml_file>
-
Submit your job:
sbatch <your_slurm_job_script>
- Hunor Csala, Sebastian De Pascuale, Paul Laiu, Jeremy Lore, Jae-Sun Park, Pei Zhang. Autoregressive long-horizon prediction of plasma edge dynamics. arXiv:2512.23884
- Junqi Yin, Mijanur Palash, M. Paul Laiu, Muralikrishnan Gopalakrishnan Meena, John Gounley, Stephen M. de Bruyn Kops, Feiyi Wang, Ramanan Sankaran, Pei Zhang. Pixel-Resolved Long-Context Learning for Turbulence at Exascale: Resolving Small-scale Eddies Toward the Viscous Limit. arXiv:2507.16697
- Pei Zhang, Paul Laiu, Matthew Norman, Doug Stefanski, and John Gounley. MATEY: multiscale adaptive foundation models for spatiotemporal physical systems. arXiv:2412.20601
- Pei Zhang, Paul Laiu, Matthew Norman, Doug Stefanski, and John Gounley. MATEY: multiscale adaptive foundation models for spatiotemporal physical systems, NeurIPS 2024 Workshop on Machine Learning and the Physical Sciences.
This codebase was originally seeded (Jan 2024) from PolymathicAI/multiple _physics_pretraining (with the commit: 67ffa35). It has since been substantially rewritten and evolved independently, with ongoing development led by the following contributors.
- Hunor Csala, ORNL
- Andrey Prokopenko, ORNL
- Junqi Yin, ORNL
- Murali Gopalakrishnan Meena, ORNL
- John Gounley, ORNL
- Paul Laiu, ORNL
- Pei Zhang, ORNL
- Mijanur R Palash, ORNL
- Xiao Jing (Georgia Tech; 2025 Summer Intern)
- Sheikh Md Shakeel Hassan Nln (University of California, Irvine; 2024 Summer Intern)
- Joseph Quinn (Vanderbilt University; 2024 Summer Intern)
