-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
initial commit with code from PLP
- Loading branch information
0 parents
commit 27ee112
Showing
22 changed files
with
9,350 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,2 @@ | ||
^.*\.Rproj$ | ||
^\.Rproj\.user$ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,49 @@ | ||
Package: DeepPatientLevelPrediction | ||
Type: Package | ||
Title: Package for deep learning patient level prediction using data in the OMOP Common Data | ||
Model | ||
Version: 0.0.1 | ||
Date: 2021-06-07 | ||
Authors@R: c( | ||
person("Jenna", "Reps", email = "[email protected]", role = c("aut", "cre")), | ||
person("Seng", "Chan You", role = c("aut")), | ||
person("Egill", "Friogeirsson", role = c("aut")) | ||
) | ||
|
||
Maintainer: Jenna Reps <[email protected]> | ||
Description: A package for creating deep learning patient level prediction models following | ||
the OHDSI PatientLevelPrediction framework. | ||
License: Apache License 2.0 | ||
URL: https://ohdsi.github.io/PatientLevelPrediction, https://github.com/OHDSI/DeepPatientLevelPrediction | ||
BugReports: https://github.com/OHDSI/DeepPatientLevelPrediction/issues | ||
VignetteBuilder: knitr | ||
Depends: | ||
R (>= 3.3.0), | ||
FeatureExtraction (>= 3.0.0) | ||
Imports: | ||
Andromeda, | ||
DatabaseConnector (>= 3.0.0), | ||
dplyr, | ||
knitr, | ||
magrittr, | ||
Matrix, | ||
ParallelLogger (>= 2.0.0), | ||
reshape2, | ||
reticulate (> 1.16), | ||
RSQLite, | ||
slam, | ||
SqlRender (>= 1.1.3), | ||
tibble, | ||
tidyr, | ||
Suggests: | ||
devtools, | ||
keras, | ||
plyr, | ||
tensorflow, | ||
testthat | ||
Remotes: | ||
ohdsi/FeatureExtraction | ||
LinkingTo: Rcpp | ||
NeedsCompilation: yes | ||
RoxygenNote: 7.1.1 | ||
Encoding: UTF-8 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,20 @@ | ||
Version: 1.0 | ||
|
||
RestoreWorkspace: No | ||
SaveWorkspace: No | ||
AlwaysSaveHistory: Default | ||
|
||
EnableCodeIndexing: Yes | ||
UseSpacesForTab: Yes | ||
NumSpacesForTab: 2 | ||
Encoding: UTF-8 | ||
|
||
RnwWeave: knitr | ||
LaTeX: pdfLaTeX | ||
|
||
BuildType: Package | ||
PackageUseDevtools: Yes | ||
PackageInstallArgs: --no-multiarch --with-keep.source | ||
PackageBuildArgs: --compact-vignettes=both | ||
PackageCheckArgs: --as-cran | ||
PackageRoxygenize: rd,namespace |
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,178 @@ | ||
# @file CNNTorch.R | ||
# | ||
# Copyright 2020 Observational Health Data Sciences and Informatics | ||
# | ||
# This file is part of PatientLevelPrediction | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
#' Create setting for CNN model with python | ||
#' @param nbfilters The number of filters | ||
#' @param epochs The number of epochs | ||
#' @param seed A seed for the model | ||
#' @param class_weight The class weight used for imbalanced data: | ||
#' 0: Inverse ratio between positives and negatives | ||
#' -1: Focal loss | ||
#' @param type It can be normal 'CNN', 'CNN_LSTM', CNN_MLF' with multiple kernels with different kernel size, | ||
#' 'CNN_MIX', 'ResNet' and 'CNN_MULTI' | ||
#' | ||
#' @examples | ||
#' \dontrun{ | ||
#' model.cnnTorch <- setCNNTorch() | ||
#' } | ||
#' @export | ||
setCNNTorch <- function(nbfilters=c(16, 32), epochs=c(20, 50), seed=0, class_weight = 0, type = 'CNN'){ | ||
|
||
ParallelLogger::logWarn('This model has broken - please use setCNN() or setCNN2() instead ') | ||
|
||
# set seed | ||
if(is.null(seed[1])){ | ||
seed <- as.integer(sample(100000000,1)) | ||
} | ||
|
||
result <- list(model='fitCNNTorch', param=split(expand.grid(nbfilters=nbfilters, | ||
epochs=epochs, seed=seed[1], | ||
class_weight = class_weight, type = type), | ||
1:(length(nbfilters)*length(epochs)) ), | ||
name='CNN Torch') | ||
|
||
class(result) <- 'modelSettings' | ||
|
||
return(result) | ||
} | ||
|
||
|
||
fitCNNTorch <- function(population, plpData, param, search='grid', quiet=F, | ||
outcomeId, cohortId, ...){ | ||
|
||
# check plpData is libsvm format or convert if needed | ||
if (!FeatureExtraction::isCovariateData(plpData$covariateData)) | ||
stop("Needs correct covariateData") | ||
|
||
if(colnames(population)[ncol(population)]!='indexes'){ | ||
warning('indexes column not present as last column - setting all index to 1') | ||
population$indexes <- rep(1, nrow(population)) | ||
} | ||
|
||
|
||
start <- Sys.time() | ||
|
||
population$rowIdPython <- population$rowId-1 #to account for python/r index difference #subjectId | ||
pPopulation <- as.matrix(population[,c('rowIdPython','outcomeCount','indexes')]) | ||
|
||
result <- toSparseTorchPython(plpData,population, map=NULL, temporal=T) | ||
|
||
outLoc <- createTempModelLoc() | ||
# clear the existing model pickles | ||
for(file in dir(outLoc)) | ||
file.remove(file.path(outLoc,file)) | ||
|
||
# do cross validation to find hyperParameter | ||
hyperParamSel <- lapply(param, function(x) do.call(trainCNNTorch, listAppend(x, | ||
list(plpData = result$data, | ||
population = pPopulation, | ||
train=TRUE, | ||
modelOutput=outLoc)) )) | ||
|
||
hyperSummary <- cbind(do.call(rbind, param), unlist(hyperParamSel)) | ||
|
||
#now train the final model and return coef | ||
bestInd <- which.max(abs(unlist(hyperParamSel)-0.5))[1] | ||
finalModel <- do.call(trainCNNTorch, listAppend(param[[bestInd]], | ||
list(plpData = result$data, | ||
population = pPopulation, | ||
train=FALSE, | ||
modelOutput=outLoc))) | ||
|
||
|
||
covariateRef <- as.data.frame(plpData$covariateData$covariateRef) | ||
incs <- rep(1, nrow(covariateRef)) | ||
covariateRef$included <- incs | ||
covariateRef$covariateValue <- rep(0, nrow(covariateRef)) | ||
|
||
modelTrained <- file.path(outLoc) | ||
param.best <- param[[bestInd]] | ||
|
||
comp <- start-Sys.time() | ||
|
||
# train prediction | ||
pred <- as.matrix(finalModel) | ||
pred[,1] <- pred[,1] + 1 # adding one to convert from python to r indexes | ||
colnames(pred) <- c('rowId','outcomeCount','indexes', 'value') | ||
pred <- as.data.frame(pred) | ||
attr(pred, "metaData") <- list(predictionType="binary") | ||
|
||
pred$value <- 1-pred$value | ||
prediction <- merge(population, pred[,c('rowId','value')], by='rowId') | ||
|
||
|
||
# return model location | ||
result <- list(model = modelTrained, | ||
trainCVAuc = -1, # ToDo decide on how to deal with this | ||
hyperParamSearch = hyperSummary, | ||
modelSettings = list(model='fitCNNTorch',modelParameters=param.best), | ||
metaData = plpData$metaData, | ||
populationSettings = attr(population, 'metaData'), | ||
outcomeId=outcomeId, | ||
cohortId=cohortId, | ||
varImp = covariateRef, | ||
trainingTime =comp, | ||
dense=1, | ||
covariateMap=result$map, # I think this is need for new data to map the same? | ||
predictionTrain = prediction | ||
) | ||
class(result) <- 'plpModel' | ||
attr(result, 'type') <- 'pythonReticulate' | ||
attr(result, 'predictionType') <- 'binary' | ||
|
||
return(result) | ||
} | ||
|
||
|
||
trainCNNTorch <- function(plpData, population, epochs=50, nbfilters = 16, seed=0, class_weight= 0, type = 'CNN', train=TRUE, modelOutput, quiet=F){ | ||
|
||
train_deeptorch <- function(){return(NULL)} | ||
|
||
python_dir <- system.file(package='PatientLevelPrediction','python') | ||
e <- environment() | ||
reticulate::source_python(system.file(package='PatientLevelPrediction','python','deepTorchFunctions.py'), envir = e) | ||
|
||
|
||
result <- train_deeptorch(population = population, | ||
plpData = plpData, | ||
epochs = as.integer(epochs), | ||
nbfilters = as.integer(nbfilters), | ||
seed = as.integer(seed), | ||
class_weight = as.double(class_weight), | ||
model_type = as.character(type), | ||
train = train, | ||
modelOutput = modelOutput, | ||
quiet = quiet | ||
) | ||
|
||
if(train){ | ||
# then get the prediction | ||
pred <- as.matrix(result) | ||
colnames(pred) <- c('rowId','outcomeCount','indexes', 'value') | ||
pred <- as.data.frame(pred) | ||
attr(pred, "metaData") <- list(predictionType="binary") | ||
|
||
pred$value <- 1-pred$value | ||
auc <- computeAuc(pred) | ||
writeLines(paste0('Model obtained CV AUC of ', auc)) | ||
return(auc) | ||
} | ||
|
||
return(result) | ||
|
||
} |
Oops, something went wrong.