MedPart
├── benchmark/ * Directory for input .hgr benchmark files
├── coarsening_results/ * Directory for storing coarsened hypergraph results
├── results/ * Directory for storing final partitioning outputs
├── GA_helper.py * Evolutionary search utilities implemented in PyTorch
├── MedPart.py * Main entry point for hypergraph partitioning
├── run_coarsening_auto.sh * Example script that wraps GraphZoom's run_coarsening.sh
└── utils.py * Utilities for reading .hgr files and coarsening outputs
The script run_coarsening_auto.sh demonstrates how to invoke GraphZoom for spectral graph coarsening.
Input .hgr files must be converted to .mtx format prior to coarsening.
Optional pruning of high-degree hyperedges can be applied to generate multiple coarsening variants
To run MedPart on a benchmark:
Update the config in MedPart.py
python MedPart.py --design <DESIGN NAME> --device cuda:0 --tag test
--design : name of the benchmark (expected under benchmark/)
--device : CUDA device or CPU
--tag : experiment tag for organizing output files