Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add THD format support for Context Parallel #641

Merged
merged 3 commits into from
May 13, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion qa/L1_pytorch_context_parallel_test/test.sh
Original file line number Diff line number Diff line change
Expand Up @@ -6,5 +6,5 @@ set -e

: ${TE_PATH:=/opt/transformerengine}

pip install pytest==6.2.5 onnxruntime==1.13.1
pip install pytest==7.2.0 onnxruntime==1.13.1
pytest -v -s $TE_PATH/tests/pytorch/fused_attn/test_fused_attn_with_cp.py
79 changes: 66 additions & 13 deletions tests/pytorch/fused_attn/run_fused_attn_with_cp.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,7 @@
import torch
import torch.distributed as dist
from transformer_engine.pytorch.attention import DotProductAttention
import transformer_engine_extensions as tex
from test_fused_attn_with_cp import model_configs_flash_attn, model_configs_fused_attn

dtypes={'fp16' : torch.float16, 'bf16' : torch.bfloat16}
Expand Down Expand Up @@ -58,12 +59,27 @@ def run_dpa_with_cp(dtype='bf16', model=None, qkv_format='bshd', kernel_backend=
q_input_shape = (config.batch_size, config.max_seqlen_q, config.num_heads, config.head_dim)
kv_input_shape = (config.batch_size, config.max_seqlen_kv, config.num_gqa_groups, config.head_dim)
attn_output_shape = (config.batch_size, config.max_seqlen_q, config.num_heads*config.head_dim)
cu_seqlens_q = None
cu_seqlens_kv = None
elif qkv_format == "sbhd":
q_input_shape = (config.max_seqlen_q, config.batch_size, config.num_heads, config.head_dim)
kv_input_shape = (config.max_seqlen_kv, config.batch_size, config.num_gqa_groups, config.head_dim)
attn_output_shape = (config.max_seqlen_q, config.batch_size, config.num_heads*config.head_dim)
cu_seqlens_q = None
cu_seqlens_kv = None
elif qkv_format == "thd":
seqlens_q = torch.randint(world_size * 2, config.max_seqlen_q + 1, [config.batch_size]).to(torch.int32)
seqlens_q = seqlens_q - seqlens_q % (world_size * 2)
cu_seqlens_q = torch.cat([torch.zeros([1], dtype=torch.int32), seqlens_q.cumsum(0)])
cu_seqlens_kv = cu_seqlens_q
q_input_shape = (cu_seqlens_q[-1], config.num_heads, config.head_dim)
kv_input_shape = (cu_seqlens_kv[-1], config.num_gqa_groups, config.head_dim)
attn_output_shape = (cu_seqlens_q[-1], config.num_heads*config.head_dim)
cu_seqlens_q = cu_seqlens_q.to(torch.int32).cuda()
cu_seqlens_kv = cu_seqlens_kv.to(torch.int32).cuda()
else:
assert False, f"{qkv_format} is an unsupported qkv_format!"
cyanguwa marked this conversation as resolved.
Show resolved Hide resolved

q = torch.randn(q_input_shape, dtype=dtypes[dtype]).cuda()
k = torch.randn(kv_input_shape, dtype=dtypes[dtype]).cuda()
v = torch.randn(kv_input_shape, dtype=dtypes[dtype]).cuda()
Expand All @@ -79,6 +95,9 @@ def run_dpa_with_cp(dtype='bf16', model=None, qkv_format='bshd', kernel_backend=
# make sure all GPU ranks have same inputs
for x in [q, k, v, dout] + ([] if bias is None else [bias]):
dist.broadcast(x, 0, group=cp_comm_group)
if qkv_format == "thd":
for x in [cu_seqlens_q, cu_seqlens_kv]:
dist.broadcast(x, 0, group=cp_comm_group)

# run core_attn without CP
for x in [q, k, v]:
Expand All @@ -87,28 +106,48 @@ def run_dpa_with_cp(dtype='bf16', model=None, qkv_format='bshd', kernel_backend=
q, k, v,
core_attention_bias_type=config.attn_bias_type,
core_attention_bias=bias,
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_kv=cu_seqlens_kv,
)
out.backward(dout)

# run core_attn wit CP
q_, k_, v_, dout_, *rest = [x.clone().detach() for x in [q, k, v, dout] + ([] if bias is None else [bias])]
bias_ = rest[0] if len(rest) else None
seq_dim = qkv_format.index('s')
q_, k_, v_, dout_ = [x.view(*x.shape[:seq_dim], 2*world_size, x.shape[seq_dim]//(2*world_size), *x.shape[(seq_dim+1):]) \
for x in [q_, k_, v_, dout_]]
seq_idx = torch.tensor([rank, 2*world_size-rank-1], device=q_.device)
q_, k_, v_, dout_ = [x.index_select(seq_dim, seq_idx) for x in [q_, k_, v_, dout_]]
q_, k_, v_, dout_ = [x.view(*x.shape[:seq_dim], -1, *x.shape[(seq_dim+2):]) for x in [q_, k_, v_, dout_]]
if qkv_format == "bshd" or qkv_format == "sbhd":
q_, k_, v_, dout_, *rest = [x.clone().detach() for x in [q, k, v, dout] + ([] if bias is None else [bias])]
bias_ = rest[0] if len(rest) else None
seq_dim = qkv_format.index('s')
q_, k_, v_, dout_ = [x.view(*x.shape[:seq_dim], 2*world_size, x.shape[seq_dim]//(2*world_size), *x.shape[(seq_dim+1):]) \
for x in [q_, k_, v_, dout_]]
seq_idx = torch.tensor([rank, 2*world_size-rank-1], device=q_.device)
q_, k_, v_, dout_ = [x.index_select(seq_dim, seq_idx) for x in [q_, k_, v_, dout_]]
q_, k_, v_, dout_ = [x.view(*x.shape[:seq_dim], -1, *x.shape[(seq_dim+2):]) for x in [q_, k_, v_, dout_]]
elif qkv_format == "thd":
q_, k_, v_, dout_ = [x.clone().detach() for x in [q, k, v, dout]]
seq_idx_q = tex.thd_get_partitioned_indices(cu_seqlens_q, q_.size(0), world_size, rank)
seq_idx_kv = tex.thd_get_partitioned_indices(cu_seqlens_kv, k_.size(0), world_size, rank)
q_, dout_ = [x.index_select(0, seq_idx_q) for x in [q_, dout_]]
k_, v_ = [x.index_select(0, seq_idx_kv) for x in [k_, v_]]
cu_seqlens_q = cu_seqlens_q // world_size
cu_seqlens_kv = cu_seqlens_kv // world_size
bias_ = None
else:
assert False, f"{qkv_format} is an unsupported qkv_format!"
q_, k_, v_ = [x.requires_grad_() for x in [q_, k_, v_]]
if bias_ is not None:
bias_ = bias_.view(*bias_.shape[:-2], 2*world_size, bias_.shape[-2]//(2*world_size), bias_.shape[-1])
bias_ = bias_.index_select(2, seq_idx)
bias_ = bias_.view(*bias_.shape[:2], -1, bias_.shape[-1])
core_attn.set_context_parallel_group(cp_comm_group, cp_comm_ranks, torch.cuda.Stream())
max_seqlen_q = config.max_seqlen_q
max_seqlen_kv = config.max_seqlen_kv
out_ = core_attn(
q_, k_, v_,
core_attention_bias_type=config.attn_bias_type,
core_attention_bias=bias_,
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_kv=cu_seqlens_kv,
max_seqlen_q=max_seqlen_q,
max_seqlen_kv=max_seqlen_kv,
)
out_.backward(dout_)

Expand All @@ -120,11 +159,20 @@ def run_dpa_with_cp(dtype='bf16', model=None, qkv_format='bshd', kernel_backend=
tols = dict(atol=5e-3, rtol=5e-3)
if dtype == 'bf16':
tols = dict(atol=2.5e-2, rtol=2.5e-2)
dq, dk, dv, out = [x.view(*x.shape[:seq_dim], 2*world_size, x.shape[seq_dim]//(2*world_size), *x.shape[(seq_dim+1):]) \
for x in [q.grad, k.grad, v.grad, out]]
dq, dk, dv, out = [x.index_select(seq_dim, seq_idx) for x in [dq, dk, dv, out]]
dq_, dk_, dv_, out_ = [x.view(*x.shape[:seq_dim], 2, x.shape[seq_dim]//2, *x.shape[(seq_dim+1):]) \
for x in [q_.grad, k_.grad, v_.grad, out_]]

if qkv_format == "bshd" or qkv_format == "sbhd":
dq, dk, dv, out = [x.view(*x.shape[:seq_dim], 2*world_size, x.shape[seq_dim]//(2*world_size), *x.shape[(seq_dim+1):]) \
for x in [q.grad, k.grad, v.grad, out]]
dq, dk, dv, out = [x.index_select(seq_dim, seq_idx) for x in [dq, dk, dv, out]]
dq_, dk_, dv_, out_ = [x.view(*x.shape[:seq_dim], 2, x.shape[seq_dim]//2, *x.shape[(seq_dim+1):]) \
for x in [q_.grad, k_.grad, v_.grad, out_]]
elif qkv_format == "thd":
dq, out = [x.index_select(0, seq_idx_q).contiguous().view(-1) for x in [q.grad, out]]
dk, dv = [x.index_select(0, seq_idx_kv).contiguous().view(-1) for x in [k.grad, v.grad]]
dq_, dk_, dv_, out_ = [x.view(-1) for x in [q_.grad, k_.grad, v_.grad, out_]]
else:
assert False, f"{qkv_format} is an unsupported qkv_format!"

if qkv_format == "bshd":
torch.testing.assert_close(out_[:, 0], out[:, 0], **tols)
torch.testing.assert_close(dq_[:, 0], dq[:, 0], **tols)
Expand All @@ -143,6 +191,11 @@ def run_dpa_with_cp(dtype='bf16', model=None, qkv_format='bshd', kernel_backend=
torch.testing.assert_close(dq_[1], dq[1], **tols)
torch.testing.assert_close(dk_[1], dk[1], **tols)
torch.testing.assert_close(dv_[1], dv[1], **tols)
elif qkv_format == "thd":
torch.testing.assert_close(out_, out, **tols)
torch.testing.assert_close(dq_, dq, **tols)
torch.testing.assert_close(dk_, dk, **tols)
torch.testing.assert_close(dv_, dv, **tols)
else:
assert False, f"{qkv_format} is an unsupported qkv_format!"

Expand Down
2 changes: 1 addition & 1 deletion tests/pytorch/fused_attn/test_fused_attn_with_cp.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,7 +33,7 @@ def get_bash_arguments(**kwargs):
@pytest.mark.skipif(get_device_compute_capability() < (8, 0), reason="CP tests require sm80+.")
@pytest.mark.parametrize("dtype", ['bf16', 'fp16'])
@pytest.mark.parametrize("model", model_configs_flash_attn.keys())
@pytest.mark.parametrize("qkv_format", ['bshd', 'sbhd'])
@pytest.mark.parametrize("qkv_format", ['bshd', 'sbhd', 'thd'])
def test_cp_with_flash_attention(dtype, model, qkv_format):
subprocess.run(
get_bash_arguments(
Expand Down
Loading
Loading