-
Notifications
You must be signed in to change notification settings - Fork 14
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
commenting out all tests that use xgboost
- Loading branch information
Showing
5 changed files
with
297 additions
and
296 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,3 +1,3 @@ | ||
Version: 0.9.2 | ||
Date: 2023-10-14 16:08:56 UTC | ||
SHA: e923bacb41fd1057fd831e39ef13fe899a935e63 | ||
Date: 2023-10-14 16:44:29 UTC | ||
SHA: 1d239694c309c6b48168b2ca19b8fd5c8d6f1d2d |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,120 +1,120 @@ | ||
dtrain <- xgboost::xgb.DMatrix(data.matrix(iris[, -1L]), label = iris[, 1L]) | ||
fit <- xgboost::xgb.train(params = list(nthread = 1L), data = dtrain, nrounds = 1L) | ||
x <- shapviz(fit, X_pred = dtrain, X = iris[, -1L]) | ||
x <- c(m1 = x, m2 = x) | ||
|
||
test_that("plots work for basic example", { | ||
expect_s3_class(sv_waterfall(x, 2), "patchwork") | ||
suppressMessages(expect_s3_class(sv_waterfall(x, 2:3), "patchwork")) | ||
expect_s3_class(sv_force(x, 2), "patchwork") | ||
suppressMessages(expect_s3_class(sv_force(x, 2:3), "patchwork")) | ||
expect_s3_class(sv_importance(x), "ggplot") | ||
expect_s3_class(sv_importance(x, bar_type = "stack"), "ggplot") | ||
expect_s3_class(sv_importance(x, bar_type = "facets"), "ggplot") | ||
expect_s3_class( | ||
sv_importance(x, show_numbers = TRUE, bar_type = "separate"), "patchwork" | ||
) | ||
expect_s3_class(sv_importance(x, kind = "beeswarm"), "patchwork") | ||
expect_s3_class(sv_dependence(x, "Petal.Length"), "patchwork") | ||
expect_s3_class(sv_dependence2D(x, x = "Petal.Length", y = "Species"), "patchwork") | ||
}) | ||
|
||
test_that("using 'max_display' gives no error", { | ||
expect_s3_class(sv_waterfall(x, 2, max_display = 2L), "patchwork") | ||
suppressMessages(expect_s3_class(sv_waterfall(x, 2:10, max_display = 2L), "patchwork")) | ||
expect_s3_class(sv_force(x, 2, max_display = 2L), "patchwork") | ||
suppressMessages(expect_s3_class(sv_force(x, 2:10, max_display = 2L), "patchwork")) | ||
expect_s3_class(sv_importance(x, max_display = 2L), "ggplot") | ||
expect_s3_class(sv_importance(x, max_display = 2L, bar_type = "stack"), "ggplot") | ||
expect_s3_class(sv_importance(x, max_display = 2L, bar_type = "facets"), "ggplot") | ||
expect_s3_class( | ||
sv_importance(x, max_display = 2L, show_numbers = TRUE, bar_type = "separate"), "patchwork" | ||
) | ||
}) | ||
|
||
# SHAP interactions | ||
x_inter <- shapviz(fit, X_pred = dtrain, X = iris[, -1L], interactions = TRUE) | ||
x_inter <- c(m1 = x_inter, m2 = x_inter) | ||
|
||
test_that("dependence plots work for interactions = TRUE", { | ||
expect_s3_class( | ||
sv_dependence(x_inter, v = "Petal.Length", interactions = TRUE), | ||
"patchwork" | ||
) | ||
expect_s3_class( | ||
sv_dependence(x_inter, v = "Petal.Length", interactions = TRUE), | ||
"patchwork" | ||
) | ||
expect_s3_class( | ||
sv_dependence(x_inter, "Petal.Length", color_var = "Species", interactions = TRUE), | ||
"patchwork" | ||
) | ||
expect_s3_class( | ||
sv_dependence2D(x_inter, x = "Petal.Length", y = "Species", interactions = TRUE), | ||
"patchwork" | ||
) | ||
}) | ||
|
||
test_that("main effect plots equal case color_var = v", { | ||
expect_equal( | ||
sv_dependence(x_inter, "Petal.Length", color_var = NULL, interactions = TRUE), | ||
sv_dependence( | ||
x_inter, "Petal.Length", color_var = "Petal.Length", interactions = TRUE | ||
) | ||
) | ||
}) | ||
|
||
test_that("Interaction plots provide patchwork object", { | ||
expect_s3_class(sv_interaction(x_inter), "patchwork") | ||
}) | ||
|
||
# Non-standard name | ||
ir <- iris | ||
ir["strange name"] <- ir$Sepal.Width * ir$Petal.Length | ||
dtrain <- xgboost::xgb.DMatrix(data.matrix(ir[, -1L]), label = ir[, 1L]) | ||
fit <- xgboost::xgb.train(params = list(nthread = 1L), data = dtrain, nrounds = 1L) | ||
x <- shapviz(fit, X_pred = dtrain, X = ir[, -1L]) | ||
x <- c(m1 = x, m2 = x) | ||
|
||
test_that("plots work for non-syntactic column names", { | ||
expect_s3_class(sv_waterfall(x, 2), "patchwork") | ||
expect_s3_class(sv_force(x, 2), "patchwork") | ||
expect_s3_class(sv_importance(x), "ggplot") | ||
expect_s3_class( | ||
sv_importance(x, bar_type = "separate", show_numbers = TRUE), "patchwork" | ||
) | ||
expect_s3_class(sv_importance(x, max_display = 2, kind = "beeswarm"), "patchwork") | ||
expect_s3_class(sv_importance(x, kind = "beeswarm"), "patchwork") | ||
expect_s3_class(sv_dependence(x, "strange name"), "patchwork") | ||
expect_s3_class( | ||
sv_dependence(x, "Petal.Length", color_var = "strange name"), "patchwork" | ||
) | ||
expect_s3_class( | ||
sv_dependence2D(x, x = "Petal.Length", y = "strange name"), "patchwork" | ||
) | ||
}) | ||
|
||
test_that("sv_importance() and sv_interaction() and kind = 'no' gives matrix", { | ||
X_pred <- data.matrix(iris[, -1L]) | ||
dtrain <- xgboost::xgb.DMatrix(X_pred, label = iris[, 1L]) | ||
fit <- xgboost::xgb.train(params = list(nthread = 1L), data = dtrain, nrounds = 1L) | ||
x <- shapviz(fit, X_pred = X_pred, interactions = TRUE) | ||
x <- c(m1 = x, m2 = x) | ||
|
||
imp <- sv_importance(x, kind = "no") | ||
expect_true(is.matrix(imp) && all(dim(imp) == c(4L, length(x)))) | ||
|
||
inter <- sv_interaction(x, kind = "no") | ||
expect_true(is.list(inter) && all(dim(inter[[1L]]) == rep(ncol(X_pred), 2L))) | ||
}) | ||
|
||
test_that("sv_dependence() does not work with multiple v", { | ||
X_pred <- data.matrix(iris[, -1L]) | ||
dtrain <- xgboost::xgb.DMatrix(X_pred, label = iris[, 1L]) | ||
fit <- xgboost::xgb.train(params = list(nthread = 1L), data = dtrain, nrounds = 1L) | ||
x <- c(m1 = shapviz(fit, X_pred = X_pred), m2 = shapviz(fit, X_pred = X_pred)) | ||
expect_error(sv_dependence(x, v = c("Species", "Sepal.Width"))) | ||
|
||
expect_error(sv_dependence2D(x, x = c("Species", "Sepal.Width"), y = "Petal.Width")) | ||
expect_error(sv_dependence2D(x, x = "Petal.Width", y = c("Species", "Sepal.Width"))) | ||
}) | ||
# dtrain <- xgboost::xgb.DMatrix(data.matrix(iris[, -1L]), label = iris[, 1L]) | ||
# fit <- xgboost::xgb.train(params = list(nthread = 1L), data = dtrain, nrounds = 1L) | ||
# x <- shapviz(fit, X_pred = dtrain, X = iris[, -1L]) | ||
# x <- c(m1 = x, m2 = x) | ||
# | ||
# test_that("plots work for basic example", { | ||
# expect_s3_class(sv_waterfall(x, 2), "patchwork") | ||
# suppressMessages(expect_s3_class(sv_waterfall(x, 2:3), "patchwork")) | ||
# expect_s3_class(sv_force(x, 2), "patchwork") | ||
# suppressMessages(expect_s3_class(sv_force(x, 2:3), "patchwork")) | ||
# expect_s3_class(sv_importance(x), "ggplot") | ||
# expect_s3_class(sv_importance(x, bar_type = "stack"), "ggplot") | ||
# expect_s3_class(sv_importance(x, bar_type = "facets"), "ggplot") | ||
# expect_s3_class( | ||
# sv_importance(x, show_numbers = TRUE, bar_type = "separate"), "patchwork" | ||
# ) | ||
# expect_s3_class(sv_importance(x, kind = "beeswarm"), "patchwork") | ||
# expect_s3_class(sv_dependence(x, "Petal.Length"), "patchwork") | ||
# expect_s3_class(sv_dependence2D(x, x = "Petal.Length", y = "Species"), "patchwork") | ||
# }) | ||
# | ||
# test_that("using 'max_display' gives no error", { | ||
# expect_s3_class(sv_waterfall(x, 2, max_display = 2L), "patchwork") | ||
# suppressMessages(expect_s3_class(sv_waterfall(x, 2:10, max_display = 2L), "patchwork")) | ||
# expect_s3_class(sv_force(x, 2, max_display = 2L), "patchwork") | ||
# suppressMessages(expect_s3_class(sv_force(x, 2:10, max_display = 2L), "patchwork")) | ||
# expect_s3_class(sv_importance(x, max_display = 2L), "ggplot") | ||
# expect_s3_class(sv_importance(x, max_display = 2L, bar_type = "stack"), "ggplot") | ||
# expect_s3_class(sv_importance(x, max_display = 2L, bar_type = "facets"), "ggplot") | ||
# expect_s3_class( | ||
# sv_importance(x, max_display = 2L, show_numbers = TRUE, bar_type = "separate"), "patchwork" | ||
# ) | ||
# }) | ||
# | ||
# # SHAP interactions | ||
# x_inter <- shapviz(fit, X_pred = dtrain, X = iris[, -1L], interactions = TRUE) | ||
# x_inter <- c(m1 = x_inter, m2 = x_inter) | ||
# | ||
# test_that("dependence plots work for interactions = TRUE", { | ||
# expect_s3_class( | ||
# sv_dependence(x_inter, v = "Petal.Length", interactions = TRUE), | ||
# "patchwork" | ||
# ) | ||
# expect_s3_class( | ||
# sv_dependence(x_inter, v = "Petal.Length", interactions = TRUE), | ||
# "patchwork" | ||
# ) | ||
# expect_s3_class( | ||
# sv_dependence(x_inter, "Petal.Length", color_var = "Species", interactions = TRUE), | ||
# "patchwork" | ||
# ) | ||
# expect_s3_class( | ||
# sv_dependence2D(x_inter, x = "Petal.Length", y = "Species", interactions = TRUE), | ||
# "patchwork" | ||
# ) | ||
# }) | ||
# | ||
# test_that("main effect plots equal case color_var = v", { | ||
# expect_equal( | ||
# sv_dependence(x_inter, "Petal.Length", color_var = NULL, interactions = TRUE), | ||
# sv_dependence( | ||
# x_inter, "Petal.Length", color_var = "Petal.Length", interactions = TRUE | ||
# ) | ||
# ) | ||
# }) | ||
# | ||
# test_that("Interaction plots provide patchwork object", { | ||
# expect_s3_class(sv_interaction(x_inter), "patchwork") | ||
# }) | ||
# | ||
# # Non-standard name | ||
# ir <- iris | ||
# ir["strange name"] <- ir$Sepal.Width * ir$Petal.Length | ||
# dtrain <- xgboost::xgb.DMatrix(data.matrix(ir[, -1L]), label = ir[, 1L]) | ||
# fit <- xgboost::xgb.train(params = list(nthread = 1L), data = dtrain, nrounds = 1L) | ||
# x <- shapviz(fit, X_pred = dtrain, X = ir[, -1L]) | ||
# x <- c(m1 = x, m2 = x) | ||
# | ||
# test_that("plots work for non-syntactic column names", { | ||
# expect_s3_class(sv_waterfall(x, 2), "patchwork") | ||
# expect_s3_class(sv_force(x, 2), "patchwork") | ||
# expect_s3_class(sv_importance(x), "ggplot") | ||
# expect_s3_class( | ||
# sv_importance(x, bar_type = "separate", show_numbers = TRUE), "patchwork" | ||
# ) | ||
# expect_s3_class(sv_importance(x, max_display = 2, kind = "beeswarm"), "patchwork") | ||
# expect_s3_class(sv_importance(x, kind = "beeswarm"), "patchwork") | ||
# expect_s3_class(sv_dependence(x, "strange name"), "patchwork") | ||
# expect_s3_class( | ||
# sv_dependence(x, "Petal.Length", color_var = "strange name"), "patchwork" | ||
# ) | ||
# expect_s3_class( | ||
# sv_dependence2D(x, x = "Petal.Length", y = "strange name"), "patchwork" | ||
# ) | ||
# }) | ||
# | ||
# test_that("sv_importance() and sv_interaction() and kind = 'no' gives matrix", { | ||
# X_pred <- data.matrix(iris[, -1L]) | ||
# dtrain <- xgboost::xgb.DMatrix(X_pred, label = iris[, 1L]) | ||
# fit <- xgboost::xgb.train(params = list(nthread = 1L), data = dtrain, nrounds = 1L) | ||
# x <- shapviz(fit, X_pred = X_pred, interactions = TRUE) | ||
# x <- c(m1 = x, m2 = x) | ||
# | ||
# imp <- sv_importance(x, kind = "no") | ||
# expect_true(is.matrix(imp) && all(dim(imp) == c(4L, length(x)))) | ||
# | ||
# inter <- sv_interaction(x, kind = "no") | ||
# expect_true(is.list(inter) && all(dim(inter[[1L]]) == rep(ncol(X_pred), 2L))) | ||
# }) | ||
# | ||
# test_that("sv_dependence() does not work with multiple v", { | ||
# X_pred <- data.matrix(iris[, -1L]) | ||
# dtrain <- xgboost::xgb.DMatrix(X_pred, label = iris[, 1L]) | ||
# fit <- xgboost::xgb.train(params = list(nthread = 1L), data = dtrain, nrounds = 1L) | ||
# x <- c(m1 = shapviz(fit, X_pred = X_pred), m2 = shapviz(fit, X_pred = X_pred)) | ||
# expect_error(sv_dependence(x, v = c("Species", "Sepal.Width"))) | ||
# | ||
# expect_error(sv_dependence2D(x, x = c("Species", "Sepal.Width"), y = "Petal.Width")) | ||
# expect_error(sv_dependence2D(x, x = "Petal.Width", y = c("Species", "Sepal.Width"))) | ||
# }) |
Oops, something went wrong.